
IRT Command Language
Version 0.020301

March 1, 2002

Bradley A. Hanson

i

Table of Contents

1 Using ICL . 1
1.1 Installing and Running ICL . 2

1.1.1 Running the Windows and Linux Versions of ICL . . 2
1.1.2 Running the Macintosh Version of ICL 3

1.2 Basic ICL Commands . 4
1.3 ICL Commands . 14
1.4 Using Tcl . 40

2 Examples . 41
2.1 Single Group Estimation . 41
2.2 Multiple Group Estimation . 45
2.3 EAP and MLE Theta Estimates for Examinees 60
2.4 Pretest Item Calibration . 62
2.5 Multiple Group Estimation with Normal Distributions 66
2.6 Bootstraping Item Parameter Estimates. 73
2.7 Simulating Item Responses . 74
2.8 Estimation of Dichotomous and Polytomous Items 76
2.9 Data Processing Using Tcl . 79

Appendix A Format Specifiers for C sprintf
Function . 84

License . 86

References . 87

Chapter 1: Using ICL 1

1 Using ICL

IRT Command Language (icl) is a computer program that can estimate parameters for
the 1–, 2–, and 3–parameter logistic item response models for dichotomous items (Lord,
1980), and the partial credit and generalized partial credit models for polytomous items
(Muraki, 1992). The 3–parameter logistic model (3PL) gives the probability of a correct
response to item j as a function of the latent variable measured by the test the item is
contained in (θ) as

Pr(Xj = 1 | θ) = cj +
1 − cj

1 + e−Daj(θ−bj)
,

where Xj is a random variable representing a response to item j (where 1 indicates a
correct response), aj, bj, and cj are item parameters, and D is a scaling constant. In
the two–parameter logistic model (2PL) the c–parameter is fixed at a specific value rather
than estimated. In the one–parameter logistic model (1PL) the a– and c–parameters are
fixed at specific values rather than estimated. For an item j with mj possible responses
(0, 1, . . . , mj − 1) the generalized partial credit model (GPCM) gives the probability of
response r as a function of latent variable θ as

Pr(Xj = r | θ) =
ezjr

1 +
∑mj−1

k=1 ezjk

,

where

zji =
i∑

k=1

aj(θ − bjk) ,

Xj is a random variable representing a response to item j, and aj and bjk, k = 1, 2, . . . , mj−1,
are item parameters. In the partial credit model (PCM) the a–parameter is fixed at a
specific value rather than estimated. icl can compute maximum likelihood or Bayes modal
estimates of item parameters by finding the maximum of the marginal likelihood or posterior
distribution, where the marginalization is over a discrete distribution of latent examinee
proficiency in the population of examinees from which the data were sampled. The EM
algorithm (Dempster, Laird, and Rubin, 1977; McLachlan and Krishnan, 1997) is used to
compute the maximum likelihood or Bayes modal estimates. icl handles single and multiple
group estimation. In single group estimation it is assumed that all examinees are sampled
from the same population, although different examinees may take different subsets of items.
In multiple group estimation groups of examinees taking different, overlapping, subsets of
items may be sampled from different populations. A description of the general algorithm
used by the program in the single group case is presented in Woodruff and Hanson (1997)
and Hanson (1998).

The next section discusses how to install and run icl on three different operating systems:
Windows, Macintosh, and Linux. Section 1.2 describes some basic icl commands. These
sections present basic information that is needed by all icl users. The last two sections
discuss icl commands that allow more control over the program. These sections only need
to be read if features are needed beyond those offered by the commands discussed in Section
1.2 (Basic icl Commands).

The next chapter contains several examples. The first two examples use only the basic
icl commands discussed in Section 1.2. The remaining examples illustrate more advanced
features of icl.

Chapter 1: Using ICL 2

Information about icl, the latest version of icl, this manual, and the icl source code can
be obtained from the icl home page (http://www.b-a-h.com/software/irt/icl/). icl
is part of the Social Science Measurement project (http://sourceforge.net/projects
/ssm/) hosted on the SourceForge web site. The development of icl is managed through
the SourceForge web site, which allows anyone interested to participate in the development
of icl.

icl supercedes the Estimation Program for Dichotomous Item Response Models
(epdirm) by adding the capability of estimating item parameters for polytomous IRT
models. Most epdirm control files will require some minor changes to be used with icl.
Most importantly, the names of the three commonly used epdirm commands epdirm_
start, epdirm_end, and starting_values have been changed to allocate_items_dist
release_items_dist, and starting_values_dichotomous, respectively, in icl. More
details about epdirm commands that have changed in icl can be found on this web page:
http://www.b-a-h.com/software/irt/icl/epdirm_differences.html.

1.1 Installing and Running ICL

There are pre–compiled versions of icl available for Windows, Macintosh, and Linux.
The Linux source code can be used to compile icl for other UNIX operating systems. In
each case icl is packaged as a single executable file. Installing icl just involves copying
this executable file to an appropriate location on the hard disk.

icl runs by executing a sequence of commands. The commands are executed one by
one in the order given. icl can be run either interactively or in batch mode. When run
interactively individual commands are typed for icl to execute. In batch mode icl processes
a file containing a sequence of commands. The commands in the file are executed in the
order in which they appear in the file. The following sections describe how to run the
Windows, Linux, and Macintosh versions of icl.

1.1.1 Running the Windows and Linux Versions of ICL

The Windows version of icl requires a 32–bit version of Windows (95, 98, NT, 2000,
XP). Even though the Windows version of icl is a command–line program it will not run
under DOS. There may be problems running icl on very early versions of Windows 95. icl
requires the DLL file ‘MSVCRT.DLL’ which was not included with the original Windows 95
release. If you have an early version of Windows 95 without ‘MSVCRT.DLL’ you will need to
upgrade your version of Windows or obtain a copy of the required DLL.

The Linux version of icl should run under any Linux distribution. It is statically linked
and does not depend on any Linux shared libraries.

icl is command line program that runs in a command console. Under Windows it runs
in a command prompt window, and under Linux it runs in a console window. icl can be
started from a command console in interactive mode by typing the name of the executable
file and hitting the enter or return key. An interactive session is started in which icl
commands can be entered. This assumes the icl executable file has been put in a directory
that is in the list of directories searched for executable applications (i.e., the directory is
contained in the list of directories given by the PATH environment variable). icl can also
be started in interactive mode by double clicking on the icl icon. This will open a console

Chapter 1: Using ICL 3

window in which icl commands can be entered. To stop an interactive icl session use the
exit command, or close the console window in which icl is running. The source command
can be used to execute a sequence of commands from a file when icl is run interactively.
To use the source command type ‘source’ followed by the name of the file containing the
icl commands to execute.

To run icl in batch mode type the name of the icl executable file followed by the name
of a file containing icl commands in a console window. The commands in the file will be
executed and icl will then quit. For example, the following command can be used to run
the example program described in Section 2.1 (the name of the executable file is icl):

icl mondaty.tcl

1.1.2 Running the Macintosh Version of ICL

The Macintosh version of icl should work on version 8.0 or higher of the classic Macin-
tosh operating system (Mac OS). icl will also probably work with Mac OS version 7, but
has only been tested on Mac OS 8 and Mac OS 9. The Macintosh version of icl will also
run in the classic environment of Mac OS X.

icl requires a Macintosh with a PowerPC processor (including the G3 or G4 processor).
All recent Macintosh models have a PowerPC processor. icl will not work on older Macin-
toshes which use the 68000 family of processors. The default memory allocation for icl is
6 megabytes. For large problems the memory allocation will need to be increased.

icl is a command line program that is run in a command console. Unlike Windows and
Linux, the Mac OS does not have any built–in command console. The Macintosh version of
icl currently only supports interactive mode in a command window created by the program.

To start the Macintosh version of icl double click on the icl program icon. When
the program begins a command window is displayed. icl commands can be typed into
this window and executed. The source command can be used to execute icl commands
contained in a file. To use the source command type ‘source’ followed by the name of the
file containing the icl commands to execute.

File names used with commands such as source are relative to the current folder. When
the program begins the current folder is the folder containing the icl application. The full
path of the current folder can be printed using the pwd command. A list of the files and
folders contained in the current folder can be obtained using the ls command. The ‘ls -l’
command lists additional information about the files and folders in the current folder.

The cd command can be used to change the current folder. It may be easier to change
the current folder if files need to be accessed in another folder which would require the use
of a full path name. On a Macintosh colons separate elements of a path name. For example,
the command ‘cd {Macintosh HD:work}’ will change the current folder to a folder named
‘work’ on a disk named ‘Macintosh HD’. The brackets are needed around the path to the
folder because there is a space in the path.

A strategy for using the Macintosh version of icl that minimizes having to type long
path names is to install the files to be used with icl within folders that are contained in
the folder containing the icl application. For instance, if the ‘examples’ folder that comes
with the icl distribution was placed in the same folder containing the icl application then
the following two commands could be used to run the given in Section 2.1:

Chapter 1: Using ICL 4

cd :examples
source mondaty.tcl

The cd command in the above example illustrates that relative paths on the Macintosh
begin with a colon. If it is necessary to deal with full path names a utility like CopyPaths
(http://www.selznick.com/products/copypaths.htm) is recommended. CopyPaths al-
lows full paths to be copied from the Finder and pasted into an icl command.

Text in the console window can be copied and saved using commands in the File and Edit
menus. To quit the program selected Quit from the File menu, or use the exit command.

1.2 Basic ICL Commands

When icl executes a sequence of commands in the order given. Commands can be
entered interactively one by one, or read from a file. This section discusses command
syntax and describes several basic icl commands.

An icl command has the following syntax
command arg1 arg2 arg3 ...

where command is the command name which is followed by the arguments to the command.
The command name and the command arguments are separated from one another by white
space (spaces or tabs).

Each icl command appears on a separate line. A command can appear on two or more
lines if each line before the last one containing the command ends with a backslash. Any
line in which the first non–blank character is a pound sign (#) is treated as a comment.
An example icl command file is given below:

Estimate item parameters using data set mondatx
from Kolen and Brennan (1995)

Write output to log file mondatx.log
output -log_file mondatx.log

36 dichotomous items to be modeled
allocate_items_dist 36

Read examinee item responses from file mondatx.
Each record contains the responses to
36 items for an examinee in columns 1-36.
read_examinees mondatx 36i1

Compute starting values for item parameter estimates
starting_values_dichotomous

Perform EM iterations for computing item parameter estimates.
Maximum of 50 EM iterations.
EM_steps -max_iter 50

Print item parameter estimates and discrete latent
variable distribution.
print -item_param -latent_dist

Chapter 1: Using ICL 5

Release memory allocated to hold items and the
latent variable distribution
release_items_dist

There are 7 icl commands in this file. All lines beginning with a pound sign are com-
ments. Blank lines are ignored. Detailed descriptions of the commands used in this com-
mand file are given below. This example is discussed in more detail in Section 2.1.

This section presents detailed descriptions of eight basic icl commands — allocate_
items_dist, release_items_dist, read_examinees, starting_values_dichotomous,
EM_steps, print, options, and output. These eight commands are all that are needed
to compute item parameter estimates in typical cases. Recall that icl commands are
executed in the order given. A restriction on the order in which the commands can be
given is that the read_examinees, starting_values_dichotomous, EM_steps, and print
commands can only occur after an allocate_items_dist command. In addition, the
output and options commands will typically occur as the first commands to be executed,
although they are not restricted to appearing before other commands.

Some arguments to icl commands begin with a hyphen. These arguments are optional
and can appear in any order. Arguments that do not begin with a hyphen must appear
in a specific position within the command string (positional arguments). In some cases an
option will be composed of two command arguments — one argument beginning with a
hyphen and a second argument following the first which specifies a variable associated with
that option. For example, the following command contains one positional argument and
two command options.

60 dichotomous items will be modeled.
50 points in discrete latent variable distribution.
Examinees are sampled from one population.
allocate_items_dist 60 -num_latent_dist_points 50 -num_groups 1

The first argument of the allocate_items_dist command is the number of items to be
modeled. This argument is required and must be the first argument of the command. The
second and third arguments (-num_latent_dist_points and 50) are associated with one
command option. These two arguments together specify that the number of points used for
the discrete latent variable distribution is 50. The fourth and fifth arguments (-num_groups
and 1) are also associated with one command option. These two argument specify that the
examinees were sampled from one group (single group estimation is used). The effect of
the command would have been the same if the last two arguments were left off because the
default number of groups is one if the ‘-num_groups’ option is not specified.

The notation used in the command documentation in this section and following sections
is as follows. The commands are presented in bold type, a command argument that is literal
text (the text is exactly the same in every instance of the command) is presented in fixed
type, and a command argument that is variable text (this text can vary from one instance
of the command to another) is presented in italic type. Optional arguments are enclosed
within a pair of question marks. In cases in which two arguments compose a command
option and must go together both arguments are enclosed in a single set of question marks.
The ‘Tcl’ to the right of each command is an indication of the language the command
was written in and can be ignored — it has no significance regarding how the command
is used. The meaning of ‘Tcl’ is explained in the next section which discusses advanced

Chapter 1: Using ICL 6

icl commands. The remainder of this section presents descriptions of the eight basic icl
commands.

Tclallocate items dist nitems ?-models list? ?-models_str string?
?-num_latent_dist_points npoints? ?-num_groups ngroups?
?-latent_dist_range list? ?-unique_points?

The allocate_items_dist command is used to specify the number of items to be
modeled, whether a dichotomous or polytomous model is to be used for each item,
the number of examinee groups, the number of points in the discrete latent variable
distribution, and the minimum and maximum points of the discrete latent variable
distribution. The allocate_items_dist command allocates space to hold informa-
tion for each item and for the latent variable distribution. An allocate_items_dist
command must be given before any of the commands except options and output
can be used. The value of the first argument is the total number of items to be mod-
eled. In subsequent commands items are identified by item number. If the number of
items specified is n then item numbers 1 through n are used to refer to these items
in subsequent commands.
The -models argument is associated with a list containing an integer for each item.
The integer 1 corresponding to an item means the item is modeled using a dichoto-
mous model. If the integer corresponding to an item is greater than 1 that means
the item is a polytomous item with that number of response categories modeled us-
ing a polytomous model. By default the three–parameter logistic model is used for
dichotomous items and the generalized partial credit model is used for polytomous
items. The default models to use for dichotomous and polytomous items can be set
with the --default_model_dichotomous and the -default_model_polytomous ar-
guments of the options command. If the -models option is not present the models
for all items are assumed to be dichotomous. The -models_str argument identifies
whether to use a dichotomous or polytomous model for each item in the same way as
the -models option, except that the integers that indicate the model to use for each
item are contained in a string. Each character in the string gives a model to use for
one item. This means the -model_str argument can only be used when the number of
response categories for all polytomous items is less than 10. If the number of response
categories is greater than 9 for any item the -models argument must be used, rather
than the -models_str argument. If the -models and a -models_str arguments are
both present the -models_str argument is used to determine the model for each item.
The following example illustrates the use of the -models_str argument.

Ten total items are modeled. The
first six items are modeled using the three-parameter
logistic model, and the remaining four items are
modeled using the generalized partial credit model.
The seventh item has two response categories, the
eighth and ninth items have 3 response categories,
and the tenth item has four response categories.
allocate_items_dist 10 -models_str 1111112334

Examples of using the -models argument are given in Sections 2.7 and 2.8.
The -num_latent_dist_points option gives the number of categories used for the
discrete latent variable distribution. The default value if the -num_latent_dist_

Chapter 1: Using ICL 7

points option is not present is 40. The -num_groups option gives the number of
groups of examinees in the data that are sampled from different populations. The
default value if the -num_groups option is not present is 1. If the number of groups
is greater than 1 multiple group estimation used, and a group identifier must be
indicated for each examinee. The list given for the -latent_dist_range option
should contain two numbers giving the minimum and maximum points of the discrete
latent variable distribution, respectively. For example, -latent_dist_range {-5 5}
indicates the minimum and maximum points of the latent distribution are -5 and 5.
The default minimum and maximum points of the latent distribution if the -latent_
dist_range option is not used are -4 and 4, respectively.
If the -unique_points option is present then unique points will be used for each latent
variable distribution in each examinee group. If the -unique_points option is not
present one set of points are used for the latent variable distributions in all examinee
groups, although different latent distribution probabilities are used for each group.
The -unique_points option is only relevant if more than one examinee group is
specified with the -num_groups option. This option must be used with the allocate_
items_dist command if the -estim_dist_mean_sd option or -estim_dist_mean
option is used with the EM_steps command. Section 2.5 gives an example in which
the -unique_points option is used.
The allocate_items_dist command assigns initial values to the item parameters for
all items. The initial parameter estimates assigned to all a–, b–, and c–parameters are
1.0, 0.0, and 0.2, respectively. The same values are used for the a– and b–parameters
of dichotomous and polytomous models. The values of the item parameters for indi-
vidual items can be changed using the item_set_param and item_set_params com-
mands. The starting_values_dichotomous command can be used to compute pa-
rameter starting values for dichotomous models.
The allocate_items_dist command initializes the prior distributions used for all
item parameters to default values. The prior distributions used as defaults can be set
using the options command. If the options command is not given the default item
parameter prior distributions for the a–, b– and c–parameters are four-parameter
beta with parameters (1.75, 3.0, 0.0, 3.0), (1.01, 1.01, -6.0, 6.0) and (3.5, 4.0, 0.0,
0.5), respectively, where the four numbers in the parameter list are the two shape
parameters followed by the lower and upper limits of the distribution. The same
default priors are used for the a–parameters and b–parameters of both dichotomous
and polytomous models. The priors used for item parameters for individual items
can be changed with the item_set_prior and items_set_prior commands.
The values of the points and weights (probabilities) used for the discrete latent vari-
able distribution are also initialized by the allocate_items_dist command. There
is one set of points (unless the -unique_points option is used) and a set of weights for
each examinee group. The default points are equally spaced between minimum and
maximum points indicated by the -latent_dist_range option, inclusive. The de-
fault weights are chosen so the resulting discrete distribution approximates a standard
normal distribution. When there is more than one examinee group the initial weights
are the same across groups. The points can be changed with the dist_set_point and
dist_set_points commands. The weights can be changed by the dist_set_prob
and dist_set_probs commands.

Chapter 1: Using ICL 8

The allocate_items_dist command writes information to the log file specified using
the output command including the version number of the icl program, the number
of items, the number of categories in the discrete latent variable distribution, the
number of groups, and the default prior distributions used for item parameters. The
command file is also listed, if a command file is being used. This information is not
written to the log file if the ‘output -no_print’ command is executed before the
allocate_items_dist command.

TclEM steps ?-max_iter iter? ?-crit d? ?-estim_dist? ?-scale_points?
?-no_print_iter? ?-no_mstep_iter_error? ?-estim_dist_mean_sd?
?-estim_dist_mean?

The EM_steps command performs EM iterations to estimate item parameters and,
optionally, the marginal latent variable distributions. An allocate_items_dist com-
mand must be given before this command can be used. The -max_iter options spec-
ifies the maximum number of EM iterations. If the maximum number of iterations
is not specified a default value of 100 is used. The convergence criterion used to
determine when to stop EM iterations is the maximum relative change in an item pa-
rameter estimate from the previous to the current iteration over all parameters across
all items. The option -crit specifies the value this convergence criterion must be less
than to stop. The default criterion if the -crit option is not specified is 0.001. If the
convergence criterion is not met after the specified number of iterations a warning
message is printed in the log file.

If the -estim_dist option is given an M–step to estimate the probabilities of the
marginal latent variable distribution for the base examinee group is performed in
each EM iteration, otherwise this distribution is fixed across EM iterations. The base
examinee group is group 1 unless otherwise specified using the -base_group option
on the options command. If the number of examinee groups is greater than one the
latent variable distributions for groups other than group 1 are estimated regardless
of whether the -estim_dist option is used.

If the -scale_points option is used the points of latent variable distribution are
linearly transformed after every M–step so that the mean and s.d. in base examinee
group are 0 and 1. This scale transformation is also applied to the parameter estimates
for all items to put them on the same scale. When this argument is not present
the points of the latent variable distribution are not changed, even when the latent
variable probabilities for all groups are estimated. This argument only has an effect
when the latent variable distribution of the base group is being estimated as requested
with the -estim_dist option.

If the -no_mstep_iter_error option is used then the maximum number of iterations
being exceeded in the M-step optimization is not considered an error that stops the
calculation. Instead, a warning message is printed in the log file and the calculation
continues. If this option is not present then if the maximum number of M–step
iterations is exceeded for an item an error message is printed and the calculation
is terminated. The maximum number of M–step iterations can be set for all items
with the -max_iter_optimize option of the options command, or can be set for
individual items with the mstep_max_iter command.

Chapter 1: Using ICL 9

If the -estim_dist_mean_sd option is used the mean and standard deviation, rather
than the probabilities, of the latent variable distributions are estimated. If this option
is used the points of the latent variable distribution for all examinee groups except
the base group are modified to be consistent with an estimated mean and standard
deviation (the mean and standard deviation are fixed for the base group). The -
estim_dist_mean option is similar to the -estim_dist_mean_sd option except that
only the means of the latent variable distributions are estimated. These options re-
quire that different latent distribution points be used for different examinee groups as
specified using the -unique_points option of the allocate_items_dist command.
Section 2.5 gives an example in which the -estim_dist_mean_sd option is used.
After each iteration several numbers are written to the log file unless output has
been suppressed with the output -no_print command: 1) the iteration number, 2)
the maximum difference between a parameter estimate from the last and second to
last iteration, 3) the maximum difference between a probability of the latent variable
distribution from the last and second to last iteration if the latent variable distribution
is being estimated (the number of examinee groups is greater than 1 or the -estim_
dist option is used, and the -estim_dist_mean_sd or -estim_dist_mean options
are not used), 4) the maximum difference between the latent variable distribution
mean from the last and second to last iteration if the -estim_dist_mean_sd or -
estim_dist_mean option is used, 5) the maximum differences in the s.d. between the
last and second to last iteration if the -estim_dist_mean_sd option is used, and 6)
the value of the marginal posterior at the value of the parameter estimates (this is the
quantity being maximized by the EM algorithm). This information is also written to
the screen unless the -no_print_iter option is used. A list containing these values
at the last iteration is returned by the EM_steps command.

Tcloptions ?-D d? ?-missing_resp resp? ?-base_group group?
?-default_model_dichotomous model? ?-default_model_polytomous
model? ?-max_iter_optimize max? ?-default_prior_a prior?
?-default_prior_b prior? ?-default_prior_c prior? ?-default_dist_range
list?

The options command sets global program options. The options set with this com-
mand influence the behavior of other commands such as the allocate_items_dist
command. Consequently, the options command is typically one of the first com-
mands executed.
The -missing_resp option is used to specify the character that indicates an examinee
has not responded to an item. Any character except ‘0’ and ‘1’, which indicate an
incorrect and correct response, can be used. The default character indicating a missing
response is a period.
The -D option specifies the value of a scaling constant (D) in the logistic function
for the 3PL, 2PL, and 1PL models. The value 1.7 makes the logistic ogive close to a
normal ogive. If the option -D command is not given the value of 1.7 is used as the
default. This option does not have an effect on the GPCM and PCM models.
The -default_model_dichotomous option specifies the default model used for an
item modeled using a dichotomous model. The value of this option can be one of three
values ‘3PL’, ‘2PL’, or ‘1PL’ corresponding to the three-parameter, two-parameter, and

Chapter 1: Using ICL 10

one-parameter logistic models. If the ‘option -default_model_dichotomous’ com-
mand is not given the three-parameter logistic model is used as the default. The
-default_model_polytomous option specifies the default model used for an item
modeled using a polytomous model. The value of this option can be either ‘GPCM’
or ‘PCM’ corresponding to the generalized partial credit model and the partial credit
model. If the ‘option -default_model_polytomous’ command is not given the gen-
eralized partial credit model is used as the default. The model for individual items
can be set with the item_set_model command.
The -base_group option specifies the examinee group that will be used as the base
group. The latent variable distribution for the base group is fixed rather than esti-
mated unless the -estim_group option is used with the EM_steps command. If the
-estim_group option is used with the EM_steps command the mean and standard
deviation of the base group latent variable distribution are fixed at zero and one.
The -max_iter_optimize option sets the maximum number of iterations used for
each item in the optimization procedure used for the M–step and starting value cal-
culations. The default value used if this option is not present is 150. To set the
maximum number of iterations used in the optimization procedure for each item
individually use the mstep_max_iter command.
The -default_dist_range option sets the minimum and maximum points to be
used for the discrete latent variable distribution. If this option is not present the
default values used for the minimum and maximum points of the discrete latent
variable distribution are -4 and 4, respectively. The minimum and maximum points
are specified as two numbers surrounded by brackets (a list of two numbers). For
example, the following command will specify the minimum and maximum points at
-5 and 5

options -default_dist_range {-5 5}

The third argument of this command shows that to specify a list of strings as a single
command argument the elements of the list should be surrounded by brackets.
The -default_prior_a, -default_prior_b, and -default_prior_c options set the
default prior distributions used for the a–, b–, and c–parameters for all items. The
same default priors for a– and b–parameters are used for dichotomous and polytomous
models. For each of these options the prior is specified by a list, where the first
element of the list is the type of prior distribution and the remaining elements of
the list are the parameters of the prior distribution. There are three distribution
types possible: ‘normal’, ‘lognormal’ ‘beta’, and ‘none’, corresponding to the normal
distribution, the lognormal distribution, the four-parameter beta distribution, and
no prior distribution, respectively. For the normal and lognormal distributions two
parameters need to be specified: a mean and standard deviation, in that order. For
the four-parameter beta distribution the parameters that need to be specified are
the two shape parameters, the lower limit, and the upper limit, in that order. For
example,

Specify prior distributions used by default in BILOG

Lognormal prior for a-parameters with mean 0 and standard
deviation 0.5 in the underlying normal distribution
options -default_prior_a {lognormal 0.0 0.5}

Chapter 1: Using ICL 11

No prior for b-parameters
options -default_prior_b none

Two-parameter beta prior is used by BILOG for the
c-parameters when the number of response options is 4.
options -default_prior_c {beta 6.0 16.0 0.0 1.0}

As the above example indicates, more than one options command can be used.
The following example shows the default prior distributions that would be used if no
options statements were used. These priors are also presented in the discussion of
the allocate_items_dist command.

Default prior for a used if option command is not used.
The 10th, 25th, 50th, 75th, and 90th percentiles
of this distribution are .34, .62, 1.05, 1.53, and 1.96,
respectively. The mean is 1.11 and the mode is .82.
options -default_prior_a {beta 1.75 3.0 0.0 3.0}

Default prior for b used if option command is not used
This is an almost uniform prior on the interval -6
to 6. It is better to not use an exact uniform
distribution so that the slopes at
the distribution limits are not infinite
options -default_prior_b {beta 1.01 1.01 -6.0 6.0}

Default prior for c used if option command is not used.
The 10th, 25th, 50th, 75th, and 90th percentiles
of this distribution are .12, .17, .23, .30, and .35,
respectively. The mean is .23 and the mode is .23.
options -default_prior_c {beta 3.5 4.0 0.0 0.5}

Separate prior distributions for parameters of individual items can be set with the
item_set_prior and items_set_prior commands.

Tcloutput ?-log_file file name? ?-no_print?
The output command is used to specify options for printed output. The -log_file
argument is used to specify the name of a log file to which the printed output of
commands is written. If the -no_print option is specified then written output of any
command is suppressed.

Tclprint ?-item_param? ?-latent_dist? ?-latent_dist_moments?
?-no_heading? ?-items itemno? ?-format string? ?-item_model?

The print command prints item parameter estimates, latent variable distributions,
and moments to the log file. If the -item_param argument is present then the current
item parameter estimates are printed to the log file. If the -latent_dist argument
is present then the current discrete latent distributions for all examinee groups are
printed to the log file. If the -latent_dist_moments argument is present then the
mean and standard deviation of the current discrete latent distributions for all ex-
aminee groups are printed to the log file. If more than one of the -item_param,

Chapter 1: Using ICL 12

-latent_dist, or -latent_dist_moments options is given the order in which the
output is printed is: 1) the item parameters, 2) latent variable distributions, and 3)
moments of the latent variable distributions. To print the options in a different order
multiple print statements could be used:

print latent variable distributions followed by item parameter
estimates
print -latent_dist
print -item_param

If the -no_heading option is used no descriptive heading is printed before the item
parameters and latent variable distribution. Item parameter estimates will only be
printed for items corresponding to item numbers in the list following -items. If the
-items option is not used item parameter estimates are printed for all items. If the
-item_param option is not used then the -items option has no effect.
The -format option is used to specify the output format used for the item parameter
estimates, weights of the latent variable distribution, and moments. The format is
used for all item parameter estimates, for the weights of the latent variable distribution
(fixed point format with six decimal places is used for the points of the latent variable
distribution), and the mean and standard deviation. The format specified is used for
all elements to be printed. To use separate formats for different elements to be printed
use separate print commands as in the example below. The string giving the format
is a C sprintf–like format — %[width][.precision]char, where char = ‘f’ (fixed
point), ‘e’ (scientific notation), or ‘g’ (fixed point or scientific notation, which ever
takes less space). A more detailed description of the format specification is given in
Appendix A. If a format is not specified the default format used for printing the item
parameter estimates and distribution moments is %.6f (fixed point with six places
after the decimal point), and the default format used for the distribution weights
is %.6e (scientific notation with six places after the decimal point). If the -model_
item option is present the model associated with each item (either 3PL, 2PL, 1PL,
GPCM, or PCM) is printed between the item number and first parameter when the
-item_param option is specified. An example of the print command is given below.

Print the item parameter estimates and latent variable
distribution using 8 digits after the decimal
point rather than the default 6.
print -item_param -format %.8f
print -latent_dist -format %.8e

Tclread examinees file resp format ?group format?
The read_examinees command reads examinee responses to the items, and optionally
an examinee group, from a file. The first argument is the name of the file to read
examinee responses from. It is assumed that each line of the file contains responses
to all items for one examinee. The second argument consists of a format list which
indicates which columns in each record contain item responses. The syntax of a
format list is explained below. The optional third argument consists of a format list
which indicates which columns in each record contain the group number the examinee
belongs to. The third argument is only needed if the number of groups indicated in the
allocate_items_dist command is greater than 1. The read_examinees command
returns the number of examinees for whom item responses were read.

Chapter 1: Using ICL 13

The number of item responses read for an examinee must be equal to the number of
items given on the allocate_items_dist command (the read_examinees_missing
command can be used when examinee records do not contain the responses to all
items). A ’1’ or ’0’ indicates a correct or incorrect response to the item, respectively.
If the examinee did not respond to the item, for example if they did not receive the
item, a ’.’ (period) should be given as the item response. The character that indicates
an examinee did not respond to the item can be changed using the options command.
The first item read for each examinee corresponds to item 1, the second item read
corresponds to item 2, etc. The group numbers must be 1, 2, . . . , up to the number
of groups.
The format list used for the second and third arguments contains strings in one of
two forms: 1) @#, where # is an integer, which means move to column # of the input
record, 2) ri#, where r and # are integers, which means read r item responses from
r times # columns at the current location in the input record, where each response
contains # characters. The r is optional, and if not given is assumed to be 1. If
there is more than one string in the format list the list must be delimited by brackets
(’{’ and ’}’). If there is only one string in the format the brackets are not necessary.
Examples of the read_examinee command illustrating the use of format lists in the
second and third argument are:

Read item responses for 15 items from columns 3-7
and columns 20-29 of each input record in file test.in
read_examinees test.in {@3 5i1 @20 10i1}

Read item responses for 100 items from columns 2-101.
Read group number from column 1
read_examinees test.in {@2 100i1} i1

Other examples illustrating the use of the read_examinees command are given in
Chapter 2.

Tclrelease items dist
The release_items_dist command indicates the completion of sequence of com-
mands begun by an allocate_items_dist command. Memory and resources al-
located by the allocate_items_dist command and subsequent commands are re-
leased, and the log file is closed. An allocate_items_dist command should be
paired with a corresponding release_items_dist command.

Tclstarting values dichotomous ?-items list? ?-use_all?
?-ignore_error?

The starting_values_dichotomous computes starting values for the item parameter
estimates of items model using a dichotomous model. An allocate_items_dist
command must be given before this command can be used. The -items argument
is followed by a list of item numbers for which starting values are to be computed.
All these items must be modeled using a dichotomous model. If the -items option is
not present starting values are computed for all items modeled using a dichotomous
model.
If the option -use_all is present then all examinees are included in the computation
of initial proficiencies used for computing starting values, even examinees who get all

Chapter 1: Using ICL 14

items correct or all items incorrect. If the -use_all argument is not present exami-
nees who get all items correct or incorrect are not included in computing the initial
proficiencies used in computing the starting values. If the argument -ignore_error
is present then the program will continue even if there was an error in computing
the starting values, although a warning message will be printed. If the argument
-ignore_error is not present the program will terminate if an error occurs in com-
puting the starting values.
More information about the starting values is contained in the discussion of the
item_3PL_starting_values command in the next section. The starting_values_
dichotomous command calls the item_3PL_starting_values command.
Currently there is no command to produce starting values for items modeled using
a polytomous model. Using the default values assigned to the a–parameters (1) and
b–parameters (0) as starting values for polytomously modeled items appears to result
in good parameter estimates, at the possible expense of more EM iterations. Starting
values for any item can be manually assigned using the item_set_param and item_
set_params commands.

1.3 ICL Commands

The commands presented in the previous section allow basic control of the program for
estimating 3PL model item parameters, and latent variable distributions, including multiple
group estimation. For many users the commands presented in the previous section are all
that would be needed to accomplish what they want to do with icl. This section discusses
additional features of the icl command language that allow more control over the operation
of the program.

To process commands icl uses an embedded Tool Command Language (Tcl)
(http://www.purl.org/tcl/home/) interpreter. Tcl is pronounced “tickle”. Tcl is a
scripting language designed to be embedded within applications in order to act as the
command language for the application. There are a basic set of icl commands written in
C++ that are added to the basic Tcl interpreter. In addition, all commands that are part
of the Tcl interpreter are available for use as icl commands. Many of the icl commands,
including all the commands described in the previous section, are actually written in the
Tcl language using the more basic commands written in C++. The Tcl source code for
the icl commands written in Tcl, including those discussed in the previous section, is
contained in the file ‘icl.tcl’ provided with the icl distribution.

There are a few restrictions on the order in which the commands can be given. Most
commands require the new_items_dist command be executed before they can be used (the
allocate_items_dist command discussed in the previous section calls the new_items_
dist command). Exceptions are commands that set default values used by other com-
mands such as set_default_D, set_default_model_dichotomous, set_default_model_
dichotomous, set_default_prior, and set_missing_resp. Examinee item response data
must be assigned using the add_examinee command before commands which compute es-
timates can be used (the allocate_items_dist or new_items_dist command must be
executed before an add_examinee command can be executed).

The format of the command descriptions is the same as that described in the previous
section. On the first line of the command description in the right margin is either

Chapter 1: Using ICL 15

‘Tcl’ or ‘C++’, which indicates whether the command was written in Tcl or C++. A
source code command written in Tcl can be found in the file ‘icl.tcl’ that comes
with the icl distribution. The source code for the commands written in C++ can be
found in the source file ‘swig_etirm.cpp’ which comes with the etirm distribution
(http://www.b-a-h.com/software/cpp/etirm.html) and the ‘swig_icl.cpp’ that come
with the icl source code distribution.

C++add examinee responses ?group? ?count?
The add_examinee command adds information for an examinee that is used for pa-
rameter estimation. The first argument is a list of integers giving the item responses
for the examinee. The number of integers in this list must be the same as the total
number of items as defined in a allocate_items_dist command. A zero represents
an incorrect response and a one represents a correct response. A negative number
indicates the examinee did not respond to the item. The second argument gives the
group number to which the examinee belongs. The default value of the second argu-
ment if it is not present is 1. The third argument gives a count which indicates the
number of times this response pattern should be counted in performing computations.
The count can be non–integer. For example, if there were two examinees with the
same response pattern in the same group they could be added with two add_examinee
commands, or one add_examinee command with a count of 2. The default value of
the third argument if it is not present is 1. The add_examinee returns the examinee
number associated with the examinee added. The examinee number for the examinee
added with the first add_examinee command is 1, etc. This number can be used in
other commands which take an examinee number as an argument.

Tclallocate items dist nitems ?-models list? ?-models_str string?
?-num_latent_dist_points npoints? ?-num_groups ngroups?
?-latent_dist_range list? ?-unique_points?

The allocate_items_dist command is documented in the previous section.

C++bootstrap seed seed
Assign a seed for the random number generator used in the bootstrap sample com-
mand. If this command is not used then the random number generator is initialized
with an arbitrary seed.

C++bootstrap sample
Generate a bootstrap sample of examinees. This command will modify the count
associated with each examinee to be the number of times the examinee is included
in the bootstrap sample. The examinee_get_count command can be used to re-
turn the count assigned to each examinee by the bootstrap_sample command. The
counts associated with examinees prior to using the bootstrap_sample command are
replaced.

C++delete items dist
The delete_items_dist command indicates the completion of a sequence of com-
mands begun by a new_items_dist command. Memory and resources allocated by

Chapter 1: Using ICL 16

the new_items_dist command and subsequent commands are released. A new_
items_dist command should be paired with a corresponding delete_items_dist
command.

C++delete estep obj
The delete_estep command disposes of an E–step object created with the new_
estep command. The argument is a variable containing an E–step object. An ex-
ample of using the delete_estep command is given in the description of the estep_
compute command.

C++dist get point cat ?group?
Returns the point value for one category of the discrete latent variable distribution.
The first argument is the number of the category for which the point value is returned:
1 for the first (lowest) category, 2 for the second category, etc. The second argument
is the number of the examinee group (1, 2, . . .) for which the point value is returned.
The default group used if the second argument is not given is 1. The third argument is
only used if different latent distribution points are used for different examinee groups
as specified in the new_items_dist or allocate_items_dist command.

C++dist get points ?group?
Returns a list containing the point values for all categories of the discrete latent
variable distribution. The argument gives the examinee group (1, 2, . . .) for which
the point values should be returned. The default group used when the argument
is not given is 1. The third argument is only used if different latent distribution
points are used for different examinee groups as specified in the new_items_dist or
allocate_items_dist command.

C++dist get prob cat ?group?
Returns the discrete probability for one category of the latent variable distribution
for one examinee group. The first argument is the number of the latent variable
category for which the probability is returned (1, 2, . . .). The second argument is
the examinee group (1, 2, . . .) for which the probability should be returned. If the
second argument is not present a default value of 1 is used.

C++dist get probs ?group?
Returns a list of the discrete probabilities for all categories of the latent variable
distribution for one examinee group. The argument is the examinee group (1, 2,
. . .) for which the probabilities should be returned. If the argument is not present a
default value of 1 is used.

C++dist mean sd ?group?
Returns a list containing the mean and standard deviation of the discrete latent
variable distribution in the examinee group indicated by the argument (the number
of the examinee group— 1, 2, . . .). If the first argument is not present a default value
of 1 is used. For example:

Chapter 1: Using ICL 17

find mean and standard deviation of latent variable
distribution in groups 1 and 2
set moments1 [dist_mean_sd 1]
set moments2 [dist_mean_sd 2]

print means for groups 1 and 2 to log file
puts_log "Means: [lindex $moments1 0], [lindex $moments2 0]"

print standard deviations for groups 1 and 2 to log file
puts_log "s.d.’s: [lindex $moments1 1], [lindex $moments2 1]"

C++dist scale mean sd ?group?
The dist_scale scales points of the discrete latent variable distribution so the mean
and standard deviation of the distribution for the examinee group given by the last
argument (the number of the examinee group — 1, 2, . . .) are equal to the values
specified by the first and second arguments. If the last argument is not present the
default value of 1 is used. If different latent distribution points are used for different
groups the points for all groups are transformed to the new scale. A list is returned
containing the slope and intercept of the scale transformation.

C++dist set point cat point ?group?
Sets the value of the latent variable for one category of the discrete latent variable
distribution in one examinee group. The first argument is the number of the category
to set: 1 for the first (lowest) category, 2 for the second category, etc. The second
argument is the value that the point for that category should be set equal to. The
third argument is a group number of the group for which the point is to be set. The
default value of the third argument if it is not present is 1. The third argument is
only used if different latent distribution points are used for different examinee groups
as specified in the new_items_dist or allocate_items_dist command.

C++dist set points list ?group?
Sets the value of the latent variable for all categories of the discrete latent variable
distribution in one examinee group. The first argument is a list giving values that the
points of each category should be set equal to. There should be as many elements in
the list as there are latent variable categories. The number of latent variable categories
is set with the allocate_items_dist command or the new_items_dist command.
The third argument is a group number of the group for which the points are to be set.
The default value of the third argument if it is not present is 1. The third argument is
only used if different latent distribution points are used for different examinee groups
as specified in the new_items_dist or allocate_items_dist command.

C++dist set prob cat prob ?group?
Sets the discrete probability for one category of the latent variable distribution in one
examinee group. The first argument is the number of the latent variable category
for which the probability is set (1, 2, . . .). The second argument is the value the
probability should be set to. The third argument is the examinee group (the number
of the examinee group— 1, 2, . . .) for which the probability should be set. If the third

Chapter 1: Using ICL 18

argument is not present a default value of 1 is used. When the probability for a single
category is set the remaining probabilities are not standardized so all probabilities
sum to one. It is the responsibility of the user to make sure the sum is one after all
probabilities have been assigned.

C++dist set probs list ?group?
Sets the discrete probabilities for all categories of the latent variable distribution for
one examinee group. The first argument is a list of probabilities which will be assigned
to the distribution. The number of elements in the list must be equal to the number
of categories in the discrete latent variable distribution as set with the allocate_
items_dist or new_items_dist command. The values in the list are standardized
to sum to 1. The second argument is the examinee group (1, 2, . . .) for which the
probabilities should be set. If the second argument is not present a default value of 1
is used.

C++dist transform slope intercept
The dist_transform transforms the points of the discrete latent variable distribution
to a new scale using a linear transformation given by the the arguments. If different
latent distribution points are used for different groups the points for all groups are
transformed to the new scale.

C++dist unique points
The dist_unique_points command returns a one if different latent distribution
points are used for different examinee groups, as requested in the new_items_dist
or allocate_items_dist command, otherwise the command returns zero.

TclEM steps ?-max_iter iter? ?-crit d? ?-estim_dist? ?-scale_points?
?-no_print_iter? ?-no_mstep_iter_error? ?-estim_dist_mean_sd?
?-estim_dist_mean?

The EM_steps command is documented in the previous section.

C++estep compute obj ?compute post? ?store post? ?items?
The estep_compute command performs E–step computations using an E–step ob-
ject created with the new_estep command. The value returned is the logarithm of
the marginal posterior density computed using the current item parameter estimates.
This is the value the EM algorithm is maximizing. The arguments are positional,
so they must appear in the indicated order. The first argument is an E–step object
created with the new_estep command. The items used to compute the posterior
distribution for each examinee are determined when the E–step object is created.
The current item parameter estimates are used for the E–step calculation. If the
second argument is non–zero the posterior distributions are computed for each ex-
aminee, otherwise posterior distributions previously computed in an estep_compute
command are used. If the second argument is not present the examinee posterior
distributions are computed (the same as the second argument being non–zero). If the
third argument is non-zero the posterior distributions for examinees are stored. The
stored posterior distribution for an examinee can be obtained with the examinee_get_
posterior command. If the third argument is not present the examinee posterior

Chapter 1: Using ICL 19

distributions are not stored (the same as the third argument being zero). The fourth
argument is a list of item numbers indicating the items for which the n’s and r’s used
in the next M–step are updated (see Woodruff and Hanson, 1997; Hanson, 1998).
If the fourth argument is not present then the n’s and r’s are updated for all items
used to compute the examinee posterior distributions as indicated in the new_estep
command. If an empty list is passed as the fourth argument the n’s and r’s are not
updated for any items. The following is an example of how to use the estep_compute
command. The example in Section 2.4 provides an illustration of the usefulness of
the estep_compute command.

Make a new E-step object and assign it to the variable e.
Items 1, 3, 5-10, 15, and 18-22 will be used to compute
the posterior latent variable distribution for each
examinee in the E-step calculation.
set e [new_estep [concat 1 3 [seq 5 10] 15 [seq 18 22]]]

compute E-step storing posterior distributions
for all examinees
estep_compute $e 1 1

print posterior mean (EAP estimate) for
examinee 1 to log file
puts_log [examinee_posterior_mean 1]

delete E-step object
delete_estep $e

Note that the value returned by the estep_compute command is the logarithm of
the marginal posterior density at the values of the item parameter estimates, not the
loglikelihood. The logarithm of the marginal posterior density is the loglikelihood
summed with the logarithm of the prior densities of all item parameters. The loglike-
lihood for the current item parameter estimates can be computed using the following
commands:

Create new E-step object
set e [new_estep]

Compute the loglikelihood. The empty list as last
argument to estep_compute indicates that n’s and
r’s will not be updated for any items. The log of
the prior density is only added to the
loglikelihood for items for which n’s and
r’s are updated. Thus, the value returned
is the loglikelihood.
set loglikelihood [estep_compute $e 1 0 {}]

Print loglikelihood to log file
puts_log "Loglikelihood: $loglikelihood\n"

Delete E-step object

Chapter 1: Using ICL 20

delete_estep $e

C++examinee get count examineeno
Returns the count for the examinee corresponding to the examinee number given by
the first argument. For an explanation of the examinee count see the description of
the add_examinee command.

C++examinee get posterior examinee
The examinee_get_posterior command returns a list containing the posterior latent
variable distribution for the examinee corresponding to the examinee number given by
the argument. This distribution must have been previously stored for the examinee,
with a command such as ‘estep_compute $e 1 1’.

C++examinee get group examinee
The examinee_get_group command returns an integer giving the group of the exam-
inee corresponding to the examinee number given by the argument. The first group
is indicated by a 1, the second group by a 2, etc.

C++examinee set group examinee group
The examinee_set_group command sets the group of the examinee corresponding
to the examinee number given by the argument to the group number given by the
second argument. The first group is indicated by a 1, the second group by a 2, etc.

C++examinee posterior mean examinee
The examinee_posterior_mean command returns the mean of the posterior latent
variable distribution for an examinee — the expected a posterior (EAP) estimate
of examinee proficiency. This distribution must have been previously stored for the
examinee, with a command such as ‘estep_compute $e 1 1’. The argument is an
examinee number for the examinee for which the posterior mean is returned. An
example of using the examinee_posterior_mean command is given in the description
of the estep_compute command and in the example in Section 2.3.

C++examinee set count examineeno count
Sets the count for the examinee corresponding to the examinee number given by the
first argument to the value given by the second argument. For an explanation of the
examinee count see the description of the add_examinee command.

C++examinee set posterior examinee list
The examinee_set_posterior command sets the probabilities of the posterior latent
variable distribution for the examinee corresponding to the examinee number given
by the first argument to the list of probabilities given by the second argument. The
number of probabilities in the list given by the second argument must be equal to the
number of categories in the discrete latent variable distribution as specified in the new_
items_dist or allocate_items_dist command. The probabilities are standardized
so they sum to one.

Chapter 1: Using ICL 21

C++examinee theta MLE examinee min theta max theta prec itemno
The examinee_theta_MLE command returns a maximum likelihood estimate (MLE)
of the latent variable for an examinee based on the examinee item responses and the
current item parameter estimates. The first argument is an examinee item number
identifying the examinee for which the MLE is returned. The second and third argu-
ments are the minimum and maximum values which the estimate can assume. The
fourth argument is a precision representing the length of interval in which MLE is
determined to lie. If the fourth argument is not present a value of 0.001 is used. The
fifth argument is a list of item numbers identifying the items used to compute the
MLE. If the fifth argument is not present the MLE will be computed using all items.

C++examinee responses examinee
Returns a list of integers representing an examinee’s responses to all items. The
argument is an examinee number of the examinee for which the item responses are
returned. The list returned contains integers where zero represents a response in the
first response category and a response in the highest response category is indicated by
an integer equal to the number of response categories minus one. A negative number
for an item response indicates the examinee did not respond to the item.

C++examinee response str examinee
Returns a string representing an examinee’s responses to all items. The argument
is an examinee number of the examinee for which the item responses are returned.
The string returned contains characters where zero represents a response in the first
response category, a two represents a response in the second response category, etc.
The character that represents a missing response is the character assigned using the
set_missing_resp command (a period by default). This command is only useful
when the number of response categories for all items is less than 10.

C++examinees count ?group?
Returns the sum of examinee counts in an examinee group, or across all examinee
groups. The count for each examinee is the value assigned when the examinee is added
with the add_examinee command. The count for an examinee can also be assigned
by the set_examinee_count command or the bootstrap_sample command. The
argument is an integer giving the examinee group for which the sum of the examinee
counts is to be returned. If the argument is not present, or is equal to zero, the sum
of examinee counts across all groups is returned. If the count for each examinee is 1
then the examinees_count command with no argument returns the same number as
the num_examinees command.

C++get base group
Returns the number of the group used as the base group when standardizing the
latent variable distribution (for instance, when the -scale_points option is specified
in the EM_steps command). The base group can be set with the set_base_group
command.

Chapter 1: Using ICL 22

C++get default prior param param
Returns a vector of parameters for the default prior distribution corresponding to the
item parameter given by the argument (‘a’, ‘b’, or ‘c’). The default prior can be set
with the set_default_prior command.

C++get default prior type param
Returns the name of the default prior distribution corresponding to the item param-
eter given by the argument (‘a’, ‘b’, or ‘c’). The string returned is either ‘normal’
(normal distribution), ‘lognormal’ (lognormal distribution), ‘beta’ (four–parameter
beta distribution), or ‘none’ (no prior distribution). The default prior can be set with
the set_default_prior command.

C++get responses line offsets lengths
The get_responses command reads item responses from a string given by the first
argument and returns a list of integer item responses (0 corresponding to the first
response category, 1 corresponding to the second response category, etc., and -1 in-
dicating no response). The second argument is a list giving the zero-based offset
of each item response in the string given by the first argument (the first character
in the string is at offset zero). The third argument is a list giving the number of
consecutive characters in the string that are to be read to obtain the item response
for each item. The number of elements in the lists given by the second and third
arguments do not need to be equal to the total number of items as specified in the
allocate_items_dist or new_items_dist command. For example:

Response record containing responses to five items beginning in
column 3. The response to fourth item is missing.
set line {12010.1}

Variable resp will contain the list
{0 1 0 -1 1} of item responses
set resp [get_responses $line {2 3 4 5 6} {1 1 1 1 1}]

C++get responses missing line offsets lengths items
The get_responses_missing command reads item responses for a subset of items
from a string given by the first argument and returns a list of integer item responses
to all items (0 corresponding to the first response category, 1 corresponding to the
second response category, etc., and -1 indicating no response). The second and third
arguments are the same as the second and third arguments of the get_responses
command. The fourth argument is a list of item numbers for which responses are to
be read. The responses to the items indicated by the fourth argument are read from
the string given by the first argument. Responses to any items not read from the
string are assigned -1 (indicating a missing response).

C++item cat counts itemno ?group?
Returns a list giving the sum of examinee counts in each response category for the
item corresponding to the item number given by the first argument. If the second
argument is used the counts are return just for examinees in the examinee group
indicated. If the second argument is not present, or is equal to zero, the counts are

Chapter 1: Using ICL 23

returned for examinees in all examinee groups. The count for each examinee is the
value assigned when the examinee is added with the add_examinee command, or the
value assigned to an examinee with the set_examinee_count command. If the count
for each examinee is 1 the number of examinees who responded in each response
category of the item is returned.

C++item get all params itemno
Returns a list of values of all item parameters for the item corresponding to item
number given by the argument. Both fixed and estimated parameters are returned.
For the 3PL, 2PL, and 1PL models the list returned contains three elements corre-
sponding to the values of the a–, b–, and c– parameters, respectively. For the 2PL
and 1PL models the c–parameter is fixed, and for the 1PL model the a–parameter is
fixed. For the GPCM and PCM the list returned contains a a–parameter followed by
b–parameters in order of increasing response category. For the PCM the a–parameter
is fixed.

C++item get model itemno
Returns a string describing model used for the item corresponding to the item num-
ber given by the argument, where ‘3PL’ = three–parameter logistic, ‘2PL’ = two–
parameter logistic, ‘1PL’ = one–parameter logistic, ‘GPCM’ = generalized partial credit
model, ‘PCM’ = partial credit model.

C++item get name itemno
Returns a string containing the name of the item corresponding to the item number
given by the argument. Item names are set with the item_set_name or items_set_
names command. If the item was not assigned a name the item number (the command
argument) is returned.

C++item get param param itemno
Returns the value of the item parameter for the parameter given by the first argument
and the item corresponding to item number given by the second argument. The first
argument is an integer giving the index of the parameter to return in the list of
parameters for the item. For a three–parameter logistic model the indices for the a–,
b–, and c– parameters are 1, 2, and 3. For a two–parameter logistic model the indices
for the a– and b– parameters are 1, 2. for a one–parameter logistic model the index
for the b–parameter is 1. For a generalized partial credit model the index for the
a–parameter is 1, and the indices of the b–parameters are 2, 3, etc. For the partial
credit model the indices for the b–parameters are 1, 2, etc.

C++item get params itemno
Returns a list of values of all estimated item parameters for the item corresponding
to item number given by the argument. For the three–parameter logistic model the
list contains the a–, b–, and c– parameters, in that order. For the two–parameter
logistic model the list contains the list contains the a–parameter followed by the b–
parameter. For the one–parameter logistic model the list contains the b–parameter.
For the generalized partial credit model the list contains the a–parameter, followed
by the b–parameters in order of increasing response category. For the partial credit
model the list contains the b–parameters in order of increasing response category.

Chapter 1: Using ICL 24

C++item get prior type param itemno
Returns the type of prior distribution (‘normal’, ‘lognormal’, ‘beta’, or ‘none’) used
for the parameter given by the first argument for the item corresponding to the item
number given by the second argument. The first argument is an integer index giving
the position of the parameter in the list of parameters for the item. The index
corresponding to each parameter is given in the description of the item_get_param
command.

C++item get prior param param itemno
Returns a list containing the parameters of the prior distribution used for the param-
eter given by the first argument for the item corresponding to item number given by
the second argument. The first argument is an integer index giving the position of
the parameter in the list of parameters for the item. The index corresponding to each
parameter is given in the description of the item_get_param command. The number
of elements in the returned list depends on the prior distribution used for the item:
2 (mean and standard deviation) for the normal and lognormal distributions, 4 (two
shape parameters, the lower limit and the upper limit) for the four–parameter beta
distribution. If no prior distribution is used for the item an empty list is returned.

C++item num params itemno
Returns the number of estimated parameters for the item corresponding to item
number given by the argument.

C++item num resp cat itemno
Returns the number of response categories (number of possible item responses) for
the item corresponding to item number given by the argument.

C++item prob resp itemno response theta
The item_prob_resp returns the probability that an examinee with a latent variable
value given by the third argument would give the response given by the second argu-
ment to the item corresponding to the item number given by the first argument. The
second argument should be an integer corresponding to an item response, where a
response in the first response category is 0, a response in the second response category
is 1, etc.

C++item resp count itemno ?group?
Returns the sum of the examinee counts for examinees responding to the item cor-
responding to the item number given by the first argument. If the second argument
is used the count is return just for examinees in the examinee group indicated. If
the second argument is not present, or is equal to zero, the count is returned for
examinees in all examinee groups. The count for each examinee is the value assigned
when the examinee is added with the add_examinee command, or the value assigned
to an examinee with the set_examinee_count or bootstrap_sample command. If
the count for each examinee is 1 the number of examinees who responded to the item
is returned.

Chapter 1: Using ICL 25

C++item scale params itemno slope intercept ?ignore priors?
Transform the scale of the parameters for the item associated with the item number
given by the first argument using the latent variable transformation with slope and
intercept given by the second and third arguments, respectively. The item_scale_
params command returns zero if the parameters were successfully transformed, or one
if the scaling would result in one or more parameters having values with zero prior
density. If the fourth argument is zero then the command returns a 1 if any trans-
formed parameter for the item has zero prior density, and the item parameters remain
unchanged. If the fourth argument is non–zero then the parameters are transformed
even if one of the transformed parameters has zero prior density, and the command
always returns 0. The default value of the fourth argument if it is not present is zero.

C++item set all params itemno list
Set the values of all item parameters for the item corresponding to the item number
given by the first argument to the values given in the second argument. Values of both
fixed and estimated item parameters are set. The order of the parameters in the list
given by the second argument is given in the description of the item_get_all_params
command. For example:

Set the values of the fixed a and c parameters, and
the estimated b parameter for item 5
(modeled using the 1PL model) to 1.0, 0.0, and 0.2, respectively.
item_set_all_params 5 {1.0 0.0 0.2}

C++item set model itemno model
Sets the model used for the item corresponding to the item number given by the first
argument to the model corresponding to the string given by the second argument.
The string identifying the model should be equal to either ‘3PL’ (three–parameter
logistic), ‘2PL’ (two–parameter logistic), ‘1PL’ (one–parameter logistic), ‘GPCM’ (gen-
eralized partial credit model), or ‘PCM’ (partial credit model). The model for an item
with more than 2 response categories cannot be changed to the 3PL, 2PL, or 1PL
model.

Tclitem set name itemno name
The item_set_name command associates a name with an item. The first argument is
an item number corresponding to the item for which the name is to be assigned. The
second argument is a string giving the name for that item. Item names are only used
to label items in output, consequently it is possible to assign names to some items and
not others. For items without item names, the item number is used to label the item
in output. Item numbers, not item names, are used as arguments in icl commands
to refer to items.

Tclitems set names names ?itemnos?
The item_set_names command associates names with items. The first argument is a
list of item names. The second argument is a list giving item numbers corresponding
to the list of item names given by the first argument. If the second argument is
not present default values of 1, 2, . . . , up to the number of elements in the name

Chapter 1: Using ICL 26

list are used. The lists given by the first and second arguments must have the same
number of elements. Item names are only used to label items in output, consequently
it is possible to assign names to some items and not others. For items without item
names, the item number is used to label the item in output. Item numbers, not item
names, are used as arguments in icl commands to refer to items. An example of the
items_set_names command is

Assign item names to the first five items
items_set_names {item20 item21 item22 item23 item24}

C++item set param param itemno value
Set the value of the item parameter given by the first argument for the item corre-
sponding to item number given by the second argument to the value given by the
third argument. The first argument is an integer index giving the position of the
parameter in the list of parameters for the item. The index corresponding to each
parameter is given in the description of the item_get_param command.

C++item set params itemno list
Set the values of all item parameters for the item corresponding to the item number
given by the first argument to the values given in the second argument. The order of
the parameters in the list given by the second argument is given in the description of
the item_get_params command. For example:

Set the values of the a, b, and c parameters for item 5
(modeled using the 3PL model) to 1.0, 0.0, and 0.2, respectively.
item_set_params 5 {1.0 0.0 0.2}

C++item set prior param itemno prior ?list?
Sets the prior distribution for the parameter given by the first argument of the item
corresponding to item number given by the second argument. The first argument is
an integer index giving the position of the parameter in the list of parameters for
the item. The index corresponding to each parameter is given in the description of
the item_get_param command. The type of prior distribution is given by the third
argument. It must be one of ‘normal’ (normal distribution), ‘lognormal’ (lognormal
distribution), ‘beta’ (four–parameter beta distribution), or ‘none’ (no prior distribu-
tion). The parameters of the prior distribution are given in a list as the last argument.
The number of prior parameters depends on the prior distribution: two (mean and
standard deviation) for ‘normal’ and ‘lognormal’, four (two shape parameters, lower
limit, and upper limit) for ‘beta’. If ‘none’ is specified as the prior distribution the
last parameter is not needed. The default prior distributions for the item parame-
ters that are used if an item_set_prior command is not present can be set by the
‘-default_prior_a’, ‘-default_prior_b’, and ‘-default_prior_c’ options of the
options command, or the set_default_prior command. The default prior distri-
butions if the item_set_prior command is not used are presented in the description
of the options command. An example of using the item_set_prior command is:

set the prior distribution for the c parameter of item 10
(modeled using the three-parameter logistic model) to
four-parameter beta with shape parameters 1.5 and 1.5, lower

Chapter 1: Using ICL 27

limit 0.0 and upper limit 0.5. This is a symmetric unimodal
distribution in the interval 0.0 to 0.5 with mode at 0.25.
item_set_prior 3 10 beta {1.5 1.5 0.0 0.5}

C++item 3PL starting values ?use all? ?item all? ?itemno?
The item_3PL_starting_values computes starting values for the item parameter
estimates for items modeled using the three–parameter logistic (3PL), two–parameter
logistic (2PL), and one–parameter logistic (1PL) models. If the first argument is non–
zero then all examinees are used to compute initial proficiencies used in computing the
starting values, even examinees who get all items correct or all items incorrect, and
all items are used to compute initial item difficulties used in computing the starting
values, even items answered correctly or incorrectly by all examinees. The default
value of the first argument if it is not present is zero. If the second argument is
non–zero all items are used to compute initial values of examinee proficiency used
in computing the starting values, even those for which starting values are not being
computed. If the second argument is zero then only items for which starting values
are being computed are used to compute initial examinee proficiencies. The default
value of the second argument if it is not present is zero. The third argument is a
list of item numbers for which starting values are computed. This list must only
contain item numbers for items modeled using the 3PL, 2PL, or 1PL models. If the
third argument is not present starting values are computed for all items modeled by
the 3PL, 2PL, or 1PL models. The value returned is an integer giving the number
of items for which minimization procedure used to compute starting values failed —
zero indicates starting values were successfully computed for all items.
Starting values are computed by producing a rough estimate of latent proficiency
for each examinee based on their item responses using the PROX procedure
(Linacre, 1994). Nonlinear regressions with these proficiencies as independent
variables and item responses as dependent variable are used to get starting
values for the item parameters. For more details on how the starting values
are calculated see the C++ source file ‘Start3PL.h’ in the etirm distribution
(http://www.b-a-h.com/software/cpp/etirm.html).

Tclitems set prior item param prior dist ?prior params? ?itemno?
The items_set_prior command sets the prior distribution for one item parameter
for a set of items. The first argument is an integer index giving the position of the
parameter in the list of parameters for the item. The index corresponding to each
parameter is given in the description of the item_get_param command. The second
argument is the type of prior distribution – either ‘normal’, ‘lognormal’, ‘beta’,
or ‘none’ corresponding to a normal distribution, a lognormal distribution, a four–
parameter beta distribution, or no prior, respectively. The third argument is a list
containing the parameters of the prior distribution. For the normal and lognormal
distribution the parameters are the mean and variance. For the four-parameter beta
distribution the parameters are the two shape parameters, the lower limit, and the
upper limit. This argument is optional because it is not needed if ‘none’ is specified
as the type of prior. The last argument is a list of item numbers identifying the
items for which the prior distribution of the indicated parameter should be set. If
the last argument is not present then the prior is set for all items. It is assumed that

Chapter 1: Using ICL 28

the parameter index given by the first argument identifies the same parameter for all
items.

C++mstep dist estep group
Performs the M–step calculation for a discrete latent variable distribution for one
examinee group. The first argument is an E-step object created using the new_estep
command. The second argument gives the number of the group (1, 2, . . .) for which
the M–step calculation giving estimates of the probabilities in the latent variable
distribution is performed.

Tclmstep item param ?-items itemno? ?-no_max_iter_error?
The mstep_item_param command performs the M–step calculation for item parame-
ter estimates. The maximum relative difference in parameters from previous iteration
to current iteration is returned. The -items option specifies a list of item numbers for
which the M–step calculation is performed. If this option is not present the M–step
calculation is performed for all items. If the -no_max_iter_error option is present
the maximum number of iterations being exceeded in the M–step optimization for
an item is not considered an error, otherwise if the maximum number of M–step it-
erations for an item is exceeded the calculation stops at the point where the error
occurred.

C++mstep items ?ignore? ?itemno?
The mstep_items command performs the M–step calculation for item parameter
estimates. The first argument is an integer flag. If the first argument is non–zero then
the maximum number of iterations in the M-step being exceeded is not treated as an
error, otherwise if the maximum number of M-step iterations is exceeded processing
stops at the point where the error occurred. The second argument is a list of item
numbers for which the M–step calculation is performed. If the second argument is
not present the M–step calculation is performed for all items. Zero is returned if
the calculation is successful. If the first argument is non-zero, and the only error
that occurs is that the maximum number of M-step iterations is exceeded, then the
negative of number of items for which maximum number iterations was exceeded is
returned. If the first argument is zero and an error occurs, or an error other than
exceeding the maximum number of M-step iterations occurs, then the item number
for which error occurred is returned and processing is stopped at the point of the
error.

C++mstep max diff
Returns the maximum relative difference between parameters in the current and pre-
vious EM iteration computed the last time the mstep_items was executed. The
maximum is over all parameters for all items.

C++mstep max iter itemno max
Sets the maximum number of iterations used in the M–step optimization procedure
for the item corresponding to the item number given in the first argument to the value
given by the second argument. The default maximum number of M–step iterations

Chapter 1: Using ICL 29

used for each item when this command is not given is 150. The maximum number of
iterations set with this command also applies to the optimization procedure used to
compute the starting values in item_3PL_starting_values command.

C++mstep message itemno
Returns the message generated in the last call to mstep_items from the optimization
procedure used for an item. The argument is the item number for which the message
is returned. The possible integers returned and their associated messages are:

0 — Optimal solution found, terminated with gradient small.
1 — Terminated with gradient small, solution is probably optimal.
2 — Terminated with step size small, solution is probably optimal.
3 — Lower point cannot be found, solution is probably optimal.
4 — Iteration limit exceeded.
5 — Too many large steps, function may be unbounded.
-1 — Analytic gradient check requested, but no analytic gradient supplied.
-2 — Analytic hessian check requested, but no analytic hessian supplied.
-3 — Illegal dimension.
-4 — Illegal tolerance.
-5 — Illegal iteration limit.
-6 — Minimization function has no good digits.
-7 — Iteration limit exceeded in line search.
-20 — Function not defined at starting value.
-21 — Check of analytic gradient failed.
-22 — Check of analytic hessian failed.

Tclmstep latent dist estep obj ?-estim_base_group? ?-scale_points?
The mstep_latent_dist command performs the M-step calculation for the probabil-
ities of the discrete latent variable distributions. The maximum relative difference in
distribution probabilities across points from the previous iteration to current iteration
is returned. The first argument is an E–step object created with the new_estep com-
mand. If the optional -estim_base_group argument is present the probabilities of
the latent variable distribution are estimated for the base group. If the -estim_base_
group argument is not present only probabilities of the latent variable distribution
for examinee groups other than the base group are estimated. If the optional -
scale_points argument is used the points of latent variable distribution are linearly
transformed so that the mean and s.d. in base examinee group are 0 and 1. This
scale transformation is also applied to the parameter estimates for all items to put
them on the same scale.

Tclmstep latent dist moments estep obj ?-mean_only?
?-estim_base_group?

The mstep_latent_dist_moments command performs the M-step calculation to esti-
mate the mean and standard deviation of the discrete latent variable distributions for

Chapter 1: Using ICL 30

all examinee groups except the base group for which the mean and standard deviation
are fixed (unless the -estim_base_group option is used). This command modifies
the points of the latent variable distribution for all groups except the base group to
be consistent with an estimated mean and standard deviation in that group. The
probabilities of the latent variable distributions are not changed. The maximum rel-
ative difference in distribution means from the previous iteration to current iteration
is returned. The first argument is an E–step object created with the new_estep com-
mand. If the optional -mean_only argument is present only the mean is estimated,
not the standard deviation. If the optional -estim_base_group argument is present
the mean and standard deviation of the base group are estimated. This command
requires that different latent distribution points be used for different examinee groups
as specified in the new_items_dist or allocate_items_dist command.

C++new items dist nitems ?npoints? ?ngroups? ?models? ?range list?
?unique points?

The new_items_dist command is used to specify the number of items to be modeled,
and optionally, the number of points in the discrete latent variable distribution, the
number of examinee groups, whether a dichotomous or polytomous model is to be
used for each item, the minimum and maximum points of the discrete latent variable
distribution, and whether unique points are used for the latent distributions in each
group. Memory is allocated by the new_items_dist for the number of items and
number of discrete latent variable points specified. The number of items and number
of points in the discrete latent variable distribution can only be changed by the new_
items_dist command. A new_items_dist command must be given before most
other commands can be used.

The first argument gives the total number of items to be modeled. In subsequent
commands items are identified by item number. If the number of items specified
is n then item numbers 1 through n are used to refer to these items in subsequent
commands. The second argument is the number of categories used for the discrete
latent variable distribution. The default value if the second argument is not present
is 40. The third argument is the number of groups of examinees in the data that are
sampled from different populations. The default value if the third argument is not
present is 1. Multiple group estimation is used if the number of groups is greater than
1, and in this case a group identifier must be indicated for each examinee.

The fourth argument is a list containing an integer for each item. The integer 1
corresponding to an item means the item is modeled using a dichotomous model.
If the integer corresponding to an item is greater than 1 that means the item is a
polytomous item with that number of response categories modeled using a polytomous
model. If the fourth argument is not present the models for all items are assumed to
be dichotomous.

The fifth argument is a list giving the minimum and maximum points of the discrete
latent variable distribution. The first element of the list is the minimum point and the
second element of the list is the maximum point of the latent variable distribution.
The default minimum and maximum points of the latent variable distribution are -4
and 4 if the fifth argument is not present.

Chapter 1: Using ICL 31

The sixth argument is an integer which if nonzero indicates different latent distribu-
tion points are used for different examinee groups. If the sixth argument is zero the
same set of latent variable points is used for all examinee groups. The default value
of the sixth argument if it is not present is zero.
The new_items_dist command initializes the IRT model used for each item and
the prior distributions of all item parameters to default values. The model and prior
distributions used as defaults can be set using the set_default_model_dichotomous,
set_default_model_polytomous, and set_default_prior commands. If the set_
default_model command is not given the default model used for dichotomous items
is the three-parameter logistic model, and the default model used for polytomous
items is the generalized partial credit model. The default prior distributions for the
item parameters are described in the documentation of the allocate_items_dist
command.
The values of the discrete latent variable points and probabilities are set to initial
values. There is a set of probabilities for each examinee group. There is one set of
points for all examinee groups unless the fifth argument is nonzero, in which case
there is a different set of points for each examinee group. The points are equally
spaced in the range given by the fourth argument. The weights are chosen so the
resulting discrete distribution approximates a standard normal distribution. The
initial probabilities and points are the same across groups. The points can be changed
with the dist_set_point and dist_set_points commands. The probabilities can
be changed by the dist_set_prob and dist_set_probs commands.

C++new estep ?items?
Creates and returns a new E-step object to use for E-step computations. The optional
argument is a list of item numbers indicating the items to be used in the E-step
calculation to compute examinee posterior latent variable distributions. The estep_
compute command is used to perform an E-step computation using an E-step object
created with the new_estep command. An E-step object created with the new_estep
command should be disposed of with the delete_estep command when it is no longer
needed. Examples of using the new_estep command is given in the description of the
estep_compute command and the example given in Section 2.4.

C++normal dist points npoints min max
Returns a list of points of a discrete distribution with the number of points given
by first argument and minimum and maximum points given by the second and third
arguments. These points correspond to the probabilities returned by the normal_
dist_prob command.

C++normal dist prob npoints min max ?mean? ?sd?
Returns a list of probabilities of a discrete distribution that approximates a normal
distribution with the number of discrete points given by the first argument, the mini-
mum point given by the second argument, and the maximum point given by the third
argument. The mean and standard deviation of the normal distribution to approxi-
mate is given by the fourth and fifth arguments. If the mean and standard deviation
are not given default values of zero and one are used. The mean must fall between
the minimum and maximum points.

Chapter 1: Using ICL 32

C++num examinees
The num_examinees command returns the number of examinees for which data have
been assigned using the add_examinee command.

C++num groups
The num_groups command returns the number of examinee groups as set with the
allocate_items_dist or new_items_dist command.

C++num items
The num_items command returns the number of items as set with the allocate_
items_dist or new_items_dist command.

C++num latent dist points
The num_latent_dist_points command returns the number of points in the discrete
latent variable distribution as set with the allocate_items_dist or new_items_dist
command.

Tcloptions ?-D d? ?-missing_resp resp? ?-base_group group?
?-default_model_dichotomous model? ?-default_model_polytomous
model? ?-max_iter_optimize max? ?-default_prior_a prior?
?-default_prior_b prior? ?-default_prior_c prior? ?-default_dist_range
list?

The options command is documented in the previous section.

Tcloutput ?-log_file file name? ?-no_print?
The output command is documented in the previous section.

Tclprint ?-item_param? ?-latent_dist? ?-latent_dist_moments?
?-no_heading? ?-items itemno? ?-format string? ?-item_model?

The print command is documented in the previous section.

Tclputs log ?-nonewline? string
The puts_log command writes a string to the log file. If the argument -nonewline is
present a newline character is not written after the end of the string. The -nonewline
argument must be the first argument if it is present.

Tclread examinees file resp format ?group format?
Documentation for the read_examinees command is given in the previous section.

Tclread examinees channel fileID resp format ?group format?
The read_examinees_channel command reads examinee responses to the items, and
optionally an examinee group, from a an open I/O channel (e.g., file or process
pipeline). The first argument is an identifier for an I/O channel returned by the
Tcl open command. The remaining arguments are the same as those for the read_
examinees command. This command functions the same as the read_examinees
command except that it takes an open I/O channel rather than a file name as the
first argument.

Chapter 1: Using ICL 33

Tclread examinees missing file form format itemNos resp format
?group format? ?group conv?

The read_examinees_missing command reads examinee responses to the items, and
optionally an examinee group, from a file. While the read_examinees command
requires responses to all items be read for every examinee, this command allows
reading of examinee records containing responses to only some of the items. The
responses to the items not read for an examinee are assumed missing. The first
argument is the name of the file to read examinee responses from.
A set of items for which a group of examinees have responses is called a form. The
second argument consists of a format list which indicates which columns in each record
contain a form identifier for each examinee. The syntax of the format list is explained
in the description of the read_examinees command. The form identifier can be any
string, it does not need to be an integer. If the second argument is an integer then
that integer is taken as the form identifier for all records in the file. This can be useful
when responses to the different forms are contained in separate files. In this case each
read_examinees_missing command is reading a file containing only one form so a
form identifier for each examinee is not needed.
The third and fourth argument are names of Tcl arrays, where the indices of the array
are the form identifiers (Tcl arrays can be indexed by general strings in addition to
integers). Note the names of the arrays are used as arguments. The array name
should not be preceded by a dollar sign when used as the third or fourth argument.
The third argument is the name of an array containing lists of item numbers for which
responses are to be read for examinees taking each form. The fourth argument is the
name of an array containing format lists used to read examinee responses for each
form. The number of elements in the arrays whose names are passed as the third and
fourth arguments should be equal to the number of forms.
A ’1’ or ’0’ indicates a correct or incorrect response to the item, respectively. If the
examinee did not respond to the item, for example if they did not receive the item,
a ’.’ (period) should be given as the item response (the character which indicates a
missing response can be changed with the options command).
The optional fifth argument consists of a format list which indicates which columns
in each record contain a group identifier for the examinee. The fifth argument is only
needed if the number of groups indicated in the allocate_items_dist command is
greater than 1. If the fifth argument is an integer then that integer is taken as the
group for all records in the file. This can be useful when responses for different groups
are kept in separate files. The optional sixth argument is the name of an array that
gives the group number (1 through the number of groups) corresponding to the group
identifiers read for each record. The read_examinees_missing command returns the
number of examinees for whom item responses were read.
The following example indicates how to use the read_examinees_missing command.
An example using the read_examinees_missing command is presented in Section 2.5.

Read data from a common item nonequivalent groups
design. Two forms of a test (A1 and B2) are taken
by different nonequivalent groups of examinees.
Forms A1 and B2 both have 60 items, with 20 items
in common between the two forms.

Chapter 1: Using ICL 34

Items 1-40 are the items unique to form A1.
Items 41-60 are the items common to forms A1 and B2.
Items 61-100 are the items unique to form B2.
The input record contains form in columns 1-2 and
responses to the 60 items taken in columns 3-62.

For examinees taking form A1 responses to items
1-60 are read
set items(A1) [seq 1 60]

For examinees taking form B2 responses to items
41-100 are read
set items(B2) [seq 41 100]

Responses are read from columns 3-62 for both forms
set respFmt(A1) {@3 60i1}
set respFmt(B2) {@3 60i1}

Group 1 are examinees taking form A1 and group
2 are examinees taking form B2
set groups(A1) 1
set groups(B2) 2

The form identifier is read from the first two columns
of the examinee record. For each examinee the
identifier should be either A1 or B2.
set formFmt a2

Read examinee responses from file test.dat
In this case form identifier and group identifier
are the same for all examinees.
read_examinees_missing test.dat $formFmt items respFmt \

$formFmt groups

Tclread examinees missing channel fileID form format itemNos
resp format ?group format? ?group conv?

The read_examinees_missing_channel allows reading of examinee records contain-
ing responses to only some of the items from an open I/O channel (e.g., file or process
pipeline). The first argument is an identifier for an I/O channel returned by the
Tcl open command. The remaining arguments are the same as those for the read_
examinees_missing command. This command functions the same as the read_
examinees_missing command except that it takes an open I/O channel rather than
a file name as the first argument.

Tclread item param file ?-item_model? ?-no_item_numbers?
The read_item_param command reads item parameters from a file. The first argu-
ment is the name of the file to read the item parameters from. The optional arguments
are the same as for the read_item_param_channel command. The item parameters
are read in the same way as described for the read_item_param_channel command.

Chapter 1: Using ICL 35

Tclread item param channel fileID ?-item_model? ?-no_item_numbers?
The read_item_param_channel command reads item parameters from an open I/O
channel (e.g., file or process pipeline). Each line read should contain an item number,
followed by the parameters for that item. Optionally, the model used for the item
may be present between the item number and first parameter. Lines are read until
the end of the file, or until a blank line is read. The first argument is an identifier
for an I/O channel returned by the Tcl open command. If the -item_model option
is present the model used for each item (3PL, 2PL, 1PL, GPCM, or PCM) is read
between the item number and first parameter. This model must match the model
specified for the item with the allocate_items_dist or new_items_dist command.
If the -no_item_numbers option is present it is assumed there are no item numbers
present before the parameters on each line. In that case, the number for an item is
taken to be the same as the line number. Both estimated and fixed parameters for
each item are read. The order in which the parameters for an item should appear on
a line is the same as that for the item_get_all_params command. The elements on
each line need to separated by white space (spaces or tabs). It is not necessary that
parameters for all items be read. The read_item_param_channel command will only
assign parameters to items corresponding to an item number in the input file.

Tclread latent dist file ?-group groupno?
The read_latent_dist command reads points and weights of the discrete latent
variable distributions from a file. The first argument is the name of a file the latent
distributions will be read from. The optional argument is the same as for the read_
latent_dist_channel command. The latent distributions are read in the same way
as described for the read_latent_dist_channel command.

Tclread latent dist channel fileID ?-group groupno?
The read_latent_dist_channel command reads points and weights of the discrete
latent variable distributions from an open I/O channel (e.g., file or process pipeline).
The argument is an identifier for an I/O channel returned by the Tcl open command
from which to read the distributions. Each line read should contain the value for a
discrete latent variable point, followed by the weights (probabilities) associated with
that point for examinee groups 1, 2, up to the number of groups. The elements on
each line need to separated by white space. The weights for each group should sum to
one. The number of lines read should be equal the number of latent variable categories
as indicated in the allocate_items_dist or new_items_dist command. In the case
in which there are different latent variable points used for different examinee groups
the single set of points read is assigned to all groups. The -group options specifies a
single group for which the distribution should be read. When this option is used the
first number on each line is read as the a point, and the second number on each line
is read as a weight for that group. If the -group option is used points and weights
are only read for one group.

Tclrelease items dist
The release_items_dist command is documented in the previous section.

Chapter 1: Using ICL 36

Tclrep value number
The rep command returns a list containing the value given by the first argument
repeated the number of times given by the second argument. An example is:

Assign x to be a list containing 60 1’s.
set x [rep 1 60]

Tclseq min max ?inc?
The seq command returns a list containing a sequence of integers where the first
integer in the sequence is equal to the first argument, the last integer in the sequence
is equal (or less than) the second argument, and the distance between consecutive in-
tegers in the sequence is equal to the third argument. The third argument is optional.
If it is not present the default value of 1 is used. An example is:

set the variable ’itemno’ equal to the list of
integers 1, 2, 3, ..., 60.
set itemno [seq 1 60]

C++set base group group
Set the base examinee group to the group corresponding to the group number given
by the argument. The base group is used when standardizing the latent variable
distribution (for instance, when the -scale_points option is specified in the EM_
steps command).

C++set default D D
Set default value of logistic scaling constant (D) to the value of the command argu-
ment. A value of 1.7 makes the logistic ogive curve close to a normal ogive curve. If
this command is not given 1.7 is used as the logistic scaling constant.

C++set default model model
Set the default model used for the items. The argument is a string equal to ‘3PL’,
‘2PL’, of ‘1PL’ corresponding to the 3–, 2–, and 1–parameter logistic models. If this
command is not given the default model used is the 3–parameter logistic.

C++set default prior param priortype priorparam
Set the default prior distribution used for the item parameter given by the first ar-
gument (a string equal to either ‘a’, ‘b’, or ‘c’) to the prior distribution identified by
the second and third arguments. The second argument specifies the type of prior dis-
tribution: ‘normal’, ‘lognormal’ ‘beta’, and ‘none’, for the normal distribution, the
lognormal distribution, the four-parameter beta distribution, and no prior distribu-
tion, respectively. The third argument is a list containing the parameters of the prior
distribution. For the normal and lognormal distributions two parameters need to be
specified: a mean and standard deviation, in that order. For the four-parameter beta
distribution the parameters that need to be specified are the two shape parameters,
the lower limit, and the upper limit, in that order. For example,

Specify lognormal with mean 0 and s.d. 1 as
default prior for a-parameter
set_default_prior a lognormal {0.0 1.0}

Chapter 1: Using ICL 37

Specify a symmetric beta distribution with
a mean of 0.2 as the default prior for the
c-parameter
set_default_prior c beta {2.0 2.0 0.0 0.4}

The default prior distributions if the set_default_prior command is not used are
given in the description of the options command.

C++set missing resp char
The set_missing_resp option is used to specify the character that indicates an
examinee has not responded to an item. The command argument is the character
that is used to represent a missing examinee response. Any character except ‘0’
and ‘1’, which indicate an incorrect and correct response, can be used. The default
character indicating a missing response if the set_missing_resp command is not
given is a period.

C++simulate seed seed
Assign the random number generator seed used in the simulate_responses com-
mand. If this command is not used then the random number generator used for the
simulate_responses command is initialized with an arbitrary seed.

C++simulate responses theta ?itemno?
This command returns a list of simulated item responses. The first argument is the
value of the latent variable for which item responses are to be simulated. The second
argument is a list of item numbers for which responses will be generated. If the second
argument is not present responses will be generated for all items. The list returned
contains integers where a response in the first response category is represented by a
0, a response in the second response category is represented by a 1, and a response
in the highest response category is indicated by an integer equal to the number of
response categories for the item minus 1.

Tclstandardize scale mean sd ?group? ?ignore prior?
Transforms the points of the latent variable distribution so the mean and standard
deviation of the distribution are equal to the first and second arguments in the group
given by the third argument. The item parameters and latent distribution points in
other groups are correspondingly transformed to be on the new scale. If the third
argument is not present the base group is used. The base group can be set with the
set_base_group command. If the fourth argument is zero then an error is generated
if the transformation results in an item parameter with a zero prior density, otherwise
no error is generated when a transformed item parameter has zero prior density. The
default value of the fourth argument if it is not present is zero. A list containing the
slope and intercept of the scale transformation is returned.

Tclstarting values dichotomous ?-items list? ?-use_all?
?-ignore_error?

The starting_values_dichotomous command is documented in the previous sec-
tion.

Chapter 1: Using ICL 38

C++test characteristic curve thetas ?itemno?
The test_characteristic_curve command returns a list giving values of the test
characteristic curve corresponding to specified values of the latent variable. The
first argument is a list giving the values of the latent variable at which the test
characteristic curve is to be computed. The second argument is a list of item numbers
which define the test for which the test characteristic curve is computed. If the second
argument is not present the test characteristic curve is computed using all items. The
number of elements in the list returned is equal to the number of elements in the list
given by the first argument.

Tcltransform scale slope intercept ?ignore prior?
Transform the item parameters and latent distribution points in all groups to a new
scale using the linear transformation given by the arguments. If the third argument
is zero then an error is generated if the transformation results in an item parameter
with a zero prior density, otherwise no error is generated when a transformed item
parameter has zero prior density. The default value of the third argument if it is not
present is zero.

Tclwrite item param channel fileID ?-format cformat? ?-item_model?
?-no_item_numbers? ?-items itemnos?

The write_item_param_channel writes item parameters for a set of items to an
open I/O channel (e.g., file or process pipeline). Each line contains an item number
followed by the all item parameter estimates for the item. Optionally, the model
associated with the item is printed between the item number and first parameter.
Both estimated and fixed parameters for each item are written. The order in which
the parameters for an item appear on the line is the same as that described for the
item_get_all_params command. If an item name has been assigned to an item
using the item_set_name or items_set_names commands then the item name is
used in place of the item number. The elements on each line are separated by tab
characters. The first argument is an I/O channel returned by the Tcl open command.
The -format option specifies a C sprintf–like format — %[width][.precision]char,
where char = ‘f’ (fixed point), ‘e’ (scientific notation), or ‘g’ (fixed point or scientific
notation, which ever takes less space). The default format if the -format option
is not present is %.6f (fixed point decimal with six places after the decimal point).
A more detailed description of the format specification is given in Appendix A. If
the -model_item option is present the model associated with each item (either 3PL,
2PL, 1PL, GPCM, or PCM) is printed between the item number and first parameter.
If the -no_item_numbers option is present item numbers are not written before the
parameters on each line. The -items option specifies a list of item numbers identifying
the items for which the item parameters should be printed. If the -items option is
not present the item parameters are printed for all items. An example of using the
write_item_param_channel command is

open file param.out for writing
set fileID [open param.out w]

write current item parameter estimates in scientific notation
with five digits after the decimal point

Chapter 1: Using ICL 39

write_item_param_channel $fileID -format %.5e

close file
close $fileID

Tclwrite item param file ?-format cformat? ?-item_model? ?-items
itemnos?

The write_item_param command writes item parameters for a set of items to a
file. The first argument is the name of the file the parameters will be written to.
If the file does not exist it will be created, and if it does exist the contents will be
overwritten. The optional arguments are the same as for the write_item_param_
channel command. The output is the same as that described for the write_item_
param_channel command.

Tclwrite latent dist channel fileID ?-point_format format?
?-weight_format wformat? ?-groups groups?

The write_latent_dist_channel command writes the points and weights of
the discrete latent variable distributions to an open I/O channel (e.g., file or
process pipeline). Each line contains a point followed by the weights for examinee
groups 1, 2, etc, if the same points are used for all group. The elements on each
line are separated by a tab character. The first argument is an identifier for an
I/O channel returned by the Tcl open command. The -point_format option
The -point_format and -weight_format options specify C sprintf–like formats
— %[width][.precision]char, where char = ‘f’ (fixed point), ‘e’ (scientific
notation), or ‘g’ (fixed point or scientific notation, which ever takes less space).
A more detailed description of the format specification is given in Appendix A.
The -point_format option specifies the format to use for the points, and the
-weight_format option specified the format to use for the weights (the same format
is used or all groups). If the -point_format option is not present the format %.6f
is used, and if the -weight_format option is not present the format %.6e is used.
The -groups option specifies a list of group numbers of groups for which weights
are to be written. If the -groups option is not present weights are written for all
groups. If different latent variable points are used for different examinee groups,
as specified in the allocate_items_dist or new_items_dist command, then the
-groups option is required and can contain only a single group number. In this case
the write_latent_dist_channel command must be called multiple times to write
the distributions for multiple groups. write_latent_dist_channel command is

open file test.out for writing
set fileID [open test.out w]

Write current latent variable distribution points and weights
using scientific notation with 5 digits after the decimal
point for the weights, and 8 digits after the decimal point
for the weights.
write_latent_dist_channel $fileID -point_format %.5e \

-weight_format %.8e

Chapter 1: Using ICL 40

Tclwrite latent dist file ?-point_format format? ?-weight_format wformat?
?-groups groups?

The write_latent_dist command writes the points and weights of the discrete latent
variable distributions to a file. The first argument is the name of the file to which
the latent distribution points and weights are written. This file is created if it does
not exist, and is overwritten if it does exist. The optional arguments are the same
as those for the write_latent_dist_channel command. The output is the same as
that described for the write_latent_dist_channel command.

1.4 Using Tcl

Command processing in icl is handled by an embedded Tool Command Language (Tcl)
interpreter. Tcl (pronounced “tickle”) is a scripting language that is used as the command
language for the icl application. The Tcl interpreter used in icl has been extended to
include the commands described in the previous two sections.

In addition to the commands documented in this manual, all commands that are part
of the basic Tcl interpreter are available to use as icl commands. Basic use of icl does not
require knowing any Tcl commands, just the commands specific to icl. This manual does
not provide a discussion of how to use the basic Tcl commands, only a description of the
commands specific to icl. Several sources are available that describe the built–in Tcl com-
mands. A good book for learning how to use Tcl is Welch (1999). A few chapters of Welch
(1999) are freely available online (http://www.beedub.com/book/) including Chapter 1
(http://www.beedub.com/book/3rd/Tclintro.pdf), which provides a nice introduction
to Tcl. Nelson (2000) is a reference book containing descriptions of all Tcl commands.
Information about getting started with Tcl (http://tcl.activestate.com/scripting/),
including documentation (http://tcl.activestate.com/doc/), and an introduction to
Tcl syntax (http://tcl.activestate.com/scripting/syntax.html), is available from
the Tcl Developer Xchange (http://tcl.activestate.com/).

Many of the icl commands described in the previous sections are written in Tcl. They are
contained in the file ‘icl.tcl’ included with the icl distribution. Any of these commands
can be overridden by redefining the command. The Tcl rename command can be used to
give a command a new name so it can be redefined yet still be assessable under a different
name.

Chapter 2: Examples 41

2 Examples

This chapter presents some examples of using icl. The command, input, and output
files for each of these examples are included with the icl distribution in the ‘examples’
directory.

The first two examples use only the basic icl commands presented in Section 1.2. These
two examples cover the basic cases of single group and multiple group estimation. These
examples illustrate all the commands needed to perform straightforward single group or
multiple group estimation using icl.

The remaining examples illustrate the use of icl in some more complex cases using
commands presented in Section 1.3 and some other Tcl commands. To fully understand the
examples other than the first two some basic knowledge of Tcl beyond what is presented in
this manual is needed. Section 1.4 provides some references for learning more about Tcl.

2.1 Single Group Estimation

This example shows how to use icl for single group estimation. The data set used for
this example is introduced in Chapter 4 of Kolen and Brennan (1995). These data consists
of responses of two groups of examinees sampled from different populations to two 36 item
test forms (Form X and Form Y). In this example only the Form Y data are used. There
were 1638 examinees who took Form Y. In this example only item parameters are estimated.
The discrete latent variable distribution is not estimated. For each EM iteration the discrete
latent variable distribution is fixed at the initial value of an approximate standard normal
distribution.

The command file for this example is named ‘mondaty.tcl’. Each command is preceded
by a comment that provides information about the command. Running icl using this
command file produces a log file named ‘mondaty.log’, which contains a listing of the
command file as part of the output. The log file ‘mondaty.log’ is given below. The top of
the log file contains the version number of the program and the date the program was run
followed by a listing of the command file. Each command in the command file is preceded
by a comment that provides information about that command.

IRT Command Language (ICL)
Version 0.020301

Feb 28, 2002 06:29

Command file mondaty.tcl
--
#
mondaty.tcl
#
Estimate item parameters for Form Y items
using data for examinees who took Form Y.
Example data from Chapters 4 and 6 Kolen and
Brennan (1995)

Write output to log file mondaty.out

Chapter 2: Examples 42

output -log_file mondaty.log

36 items to be modeled
allocate_items_dist 36

Read examinee item responses from file mondaty.dat.
Each record contains the responses to
36 items for an examinee in columns 1-36.
read_examinees mondaty.dat 36i1

Compute starting values for item parameter estimates
starting_values_dichotomous

Perform EM iterations for computing item parameter estimates.
Maximum of 50 EM iterations.
EM_steps -max_iter 50

Print item parameter estimates and discrete latent
variable distribution.
print -item_param -latent_dist

end of run
release_items_dist
--

Number of items: 36
Number of latent variable points: 40
Number of examinee groups: 1

Default prior for a-parameters:
beta a: 1.750 b: 3.000 lower limit: 0.000 upper limit: 3.000

Default prior for b-parameters:
beta a: 1.010 b: 1.010 lower limit: -6.000 upper limit: 6.000

Default prior for c-parameters:
beta a: 3.500 b: 4.000 lower limit: 0.000 upper limit: 0.500

Read 1638 examinee records from file mondaty.dat

EM iterations
(iteration: parameter criterion, marginal posterior mode)

1: 0.323389 -33397.5098
2: 0.110038 -33389.3586
3: 0.062705 -33387.3062
4: 0.035834 -33386.6304
5: 0.020535 -33386.3208
6: 0.011804 -33386.1332
7: 0.006828 -33386.0002
8: 0.003986 -33385.8991
9: 0.003053 -33385.8198

Chapter 2: Examples 43

10: 0.002604 -33385.7570
11: 0.002277 -33385.7068
12: 0.002034 -33385.6665
13: 0.001827 -33385.6342
14: 0.001643 -33385.6082
15: 0.001479 -33385.5873
16: 0.001331 -33385.5704
17: 0.001198 -33385.5568
18: 0.001077 -33385.5458
19: 0.000969 -33385.5370

Item Parameter Estimates
(a, b, c for 3PL, 2PL, 1PL; a, b1, b2, ... for GPCM, PCM)
1 0.906423 -1.347660 0.208407
2 0.473684 -0.371264 0.121268
3 0.454707 -1.179623 0.205979
4 0.572846 -0.785926 0.176588
5 0.677359 -1.215177 0.307152
6 0.616771 -1.070789 0.278926
7 1.345043 0.120214 0.317249
8 0.492794 0.422721 0.321266
9 0.625573 -0.638649 0.141979
10 0.908488 -0.353344 0.173849
11 1.071849 -0.778552 0.107534
12 0.626706 -0.335110 0.087110
13 0.897964 0.039772 0.155317
14 0.764979 -0.277579 0.099294
15 1.149896 0.562483 0.324354
16 0.882140 0.570445 0.241832
17 0.656918 0.934675 0.253957
18 0.848905 -0.105520 0.068215
19 1.059801 -0.127841 0.192292
20 0.878602 0.397564 0.157621
21 0.361482 2.504522 0.215255
22 0.823831 -0.090087 0.142616
23 1.384274 0.519738 0.257000
24 1.516551 0.579964 0.235205
25 1.310816 0.620187 0.268282
26 1.088591 0.393237 0.193605
27 1.196990 0.910755 0.177657
28 1.343262 1.084245 0.237970
29 1.076227 0.682977 0.117473
30 0.671011 1.803170 0.080542
31 1.190248 1.323631 0.190957
32 1.096862 0.886164 0.107298
33 1.224951 1.029468 0.065284
34 1.344530 1.724109 0.102385
35 1.284450 1.908184 0.082827
36 1.043982 1.987125 0.129066

Chapter 2: Examples 44

Discrete Latent Variable Distributions
(point, probability for group 1, 2, etc)
-4.000000 2.745344e-05
-3.794872 6.106663e-05
-3.589744 1.302378e-04
-3.384615 2.663153e-04
-3.179487 5.221329e-04
-2.974359 9.815038e-04
-2.769231 1.769004e-03
-2.564103 3.056973e-03
-2.358974 5.065011e-03
-2.153846 8.046278e-03
-1.948718 1.225563e-02
-1.743590 1.789790e-02
-1.538462 2.506079e-02
-1.333333 3.364442e-02
-1.128205 4.330694e-02
-0.923077 5.344755e-02
-0.717949 6.324468e-02
-0.512821 7.175402e-02
-0.307692 7.805385e-02
-0.102564 8.140824e-02
0.102564 8.140824e-02
0.307692 7.805385e-02
0.512821 7.175402e-02
0.717949 6.324468e-02
0.923077 5.344755e-02
1.128205 4.330694e-02
1.333333 3.364442e-02
1.538462 2.506079e-02
1.743590 1.789790e-02
1.948718 1.225563e-02
2.153846 8.046278e-03
2.358974 5.065011e-03
2.564103 3.056973e-03
2.769231 1.769004e-03
2.974359 9.815038e-04
3.179487 5.221329e-04
3.384615 2.663153e-04
3.589744 1.302378e-04
3.794872 6.106663e-05
4.000000 2.745344e-05

Following the listing of the command file the number of items, groups and discrete latent
variable points that were specified are printed along with the default prior distributions that
will used for each item parameter. All output up to this point is the result of the allocate_
items_dist command. The read_examinees command results in the number of examinee
records read from the input file being printed. The EM_steps results in information from
each EM iteration being printed. For each iteration the iteration number is printed followed

Chapter 2: Examples 45

by the criterion used to determine convergence. This is the largest relative difference of
a parameter estimate from the previous and current iteration relative to the parameter
estimate for the current iteration across all parameter estimates for all items. This value
generally decreases at each iteration, although it is possible it could increase. The default
convergence criterion of 0.001 is reached at iteration 19. Also reported for each iteration is
the value of the marginal loglikelihood of the data over the latent variable distribution, or
in the case of Bayes modal estimation the value of the marginal log posterior distribution
at the mode. This is the value being maximized by the EM algorithm. It will increase at
each iteration.

The item parameter estimates are then printed. This output is the result of the -
item_param option of the print command. The item parameter estimates on each line are
separated by a tab character. These values correspond to those in Table 6.5 of Kolen and
Brennan (1995) which were computed using the same data.

At the end of the log file are the points and probabilities of the discrete latent variable
distribution. This output is the result of the -latent_dist option of the print command.
The points and probabilities are separated by a tab character. The distribution was not
estimated in this example, so the points and probabilities printed represent the initial values
which approximate a standard normal distribution on equally space points from -4 to 4.

2.2 Multiple Group Estimation

This example shows how to use icl for multiple group estimation using data from a
common-item nonequivalent groups equating design. The data set introduced in Chapter
4 of Kolen and Brennan is used for this example. This data set consists of two groups of
examinees sampled from different populations taking two forms of a 36 item test (Form X
and Form Y). There are 12 items in common to Form X and Form Y. Consequently, this is
an example of a common–item nonequivalent groups design that is often used in equating
studies. The Form Y data were used in the previous example. This example uses both the
Form Y and Form X data.

Two approaches to obtaining item parameter estimates for data from a common–item
nonequivalent groups design are separate and concurrent estimation. In separate estimate
the item parameters for the two forms are separately estimated, and the two sets of item
parameter estimates for the common items are used to calculate a scale transformation
to put the Form X parameters on the same scale as the Form Y parameters. This is the
approached used in Chapter 6 of Kolen and Brennan (1995) to obtain item parameter
estimates for the two Forms. An alternative is concurrent estimation in which all data are
used to estimate item parameters for all items simultaneously. In order to appropriately
perform concurrent estimation separate latent variable distributions must be assumed for
the groups that took the two forms, and multiple group estimation must be used (Bock &
Zimowski, 1996). The multiple group estimation procedure involves estimating not only the
item parameters but the latent variable distributions for the two groups.

The log file below (‘mondat2.log’) shows the results of running icl on these data with
default options using a command file ‘mondat2.tcl’. The discrete latent variable distri-
bution of the group that took Form Y (group 1) is fixed at a discrete approximation to
a standard normal distribution. The probabilities of the latent distribution for the group
that took Form X (group 2) are estimated along with the item parameters. The command

Chapter 2: Examples 46

file used for this run (‘mondat2.tcl’) is listed at the top of the log file. There is a comment
before each command providing information about the command.

IRT Command Language (ICL)
Version 0.020301

Feb 28, 2002 06:30

Command file mondat2.tcl
--
#
mondat2.tcl
#
Estimate item parameters for Form Y and Form X
items fixing the latent variable distribution of
the group that took Form X at a discrete approximation
to a standard normal distribution and estimating
the latent variable distribution of the group
that took Form Y.
Example data from Chapters 4 and 6 Kolen and
Brennan (1995)

Write output to log file mondat2.log
output -log_file mondat2.log

24 unique items on each of two forms and
12 common items for a total of 60
items. Two groups specified
for multiple group estimation
allocate_items_dist 60 -num_groups 2

Read examinee item responses from file mondat.dat.
Each record contains the responses to
60 items for an examinee in columns 2-61.
The first 24 items are the unique items on
Form Y, the second 12 items are common items,
and the last 24 items are unique items on
Form X. An integer in column 1 gives
the examinee group: 1 for examinees
who took Form Y, and 2 for examinees
who took Form X
read_examinees mondat.dat {@2 60i1} {i1}

Compute starting values for item parameter estimates
starting_values_dichotomous

Perform EM iterations for computing item parameter estimates
and probabilities of latent variable distribution for
group 2.
EM_steps

Chapter 2: Examples 47

Print item parameter estimates, discrete latent
variable distributions, and mean and s.d. of
latent variable distributions.
print -item_param -latent_dist -latent_dist_moments

end of run
release_items_dist
--

Number of items: 60
Number of latent variable points: 40
Number of examinee groups: 2

Default prior for a-parameters:
beta a: 1.750 b: 3.000 lower limit: 0.000 upper limit: 3.000

Default prior for b-parameters:
beta a: 1.010 b: 1.010 lower limit: -6.000 upper limit: 6.000

Default prior for c-parameters:
beta a: 3.500 b: 4.000 lower limit: 0.000 upper limit: 0.500

Read 3293 examinee records from file mondat.dat

EM iterations
(iteration: parameter criterion, dist criterion,
marginal posterior mode)

1: 0.325684 0.792375 -67324.1530
2: 0.118463 0.032091 -67309.4932
3: 0.067596 0.043489 -67304.2629
4: 0.038600 0.040133 -67301.4630
5: 0.022204 0.036295 -67299.6131

To save space results for iterations 6–47 have not been included

48: 0.001029 0.004610 -67289.5678
49: 0.001006 0.004627 -67289.5441
50: 0.000983 0.004640 -67289.5211

Item Parameter Estimates
(a, b, c for 3PL, 2PL, 1PL; a, b1, b2, ... for GPCM, PCM)
1 0.902049 -1.346818 0.208466
2 0.471417 -0.366077 0.121348
3 0.572317 -0.777315 0.177926
4 0.673001 -1.209600 0.309646
5 1.338834 0.128340 0.317040
6 0.500505 0.456035 0.327627
7 0.907474 -0.344096 0.175273
8 1.069827 -0.778211 0.104336
9 0.897436 0.050535 0.156708

Chapter 2: Examples 48

10 0.761472 -0.270436 0.099868
11 0.883390 0.581825 0.242873
12 0.654371 0.943493 0.253757
13 1.063666 -0.113581 0.195530
14 0.879993 0.408817 0.158874
15 0.823225 -0.077643 0.144995
16 1.394771 0.533100 0.258673
17 1.317835 0.633579 0.269809
18 1.093679 0.405745 0.195304
19 1.350875 1.093911 0.238635
20 1.084287 0.693878 0.118892
21 1.206940 1.330781 0.192186
22 1.110434 0.898678 0.109714
23 1.379741 1.718422 0.103069
24 1.295562 1.906052 0.082852
25 0.451529 -1.017349 0.264057
26 0.607908 -1.009752 0.316995
27 0.651341 -0.581375 0.128070
28 0.611004 -0.380763 0.102269
29 1.158889 0.568537 0.318312
30 0.848076 -0.205679 0.040316
31 0.271444 2.201852 0.130057
32 1.587493 0.606562 0.247714
33 1.568531 0.962962 0.197606
34 0.635111 1.844574 0.073585
35 1.279586 1.072499 0.068289
36 1.106592 1.882636 0.114267
37 0.471825 -2.429900 0.228530
38 0.750045 -0.934507 0.133897
39 1.491997 0.073402 0.288756
40 1.046136 -0.458091 0.324941
41 0.946046 0.117222 0.353344
42 1.244699 -0.439677 0.279729
43 0.962483 0.618718 0.374043
44 0.995185 0.325047 0.251834
45 1.294408 0.026028 0.268403
46 1.091252 0.393986 0.169489
47 0.976533 0.239023 0.273558
48 0.933876 0.146591 0.250714
49 0.637557 -0.012976 0.133525
50 1.138165 0.551257 0.217272
51 0.909770 0.668293 0.249267
52 1.122261 0.165681 0.068003
53 0.486087 1.018214 0.146719
54 0.917912 0.672956 0.092374
55 1.460418 1.080933 0.161300
56 0.988716 1.121005 0.145468
57 1.215465 1.488096 0.244659
58 0.867742 1.291361 0.087738

Chapter 2: Examples 49

59 0.391847 3.706447 0.118318
60 0.828203 2.887799 0.107679

Discrete Latent Variable Distributions
(point, probability for group 1, 2, etc)
-4.000000 2.745344e-05 7.530285e-04
-3.794872 6.106663e-05 1.486021e-03
-3.589744 1.302378e-04 2.716769e-03
-3.384615 2.663153e-04 4.572037e-03
-3.179487 5.221329e-04 7.043583e-03
-2.974359 9.815038e-04 9.904101e-03
-2.769231 1.769004e-03 1.273877e-02
-2.564103 3.056973e-03 1.515239e-02
-2.358974 5.065011e-03 1.706718e-02
-2.153846 8.046278e-03 1.892539e-02
-1.948718 1.225563e-02 2.172727e-02
-1.743590 1.789790e-02 2.702136e-02
-1.538462 2.506079e-02 3.665557e-02
-1.333333 3.364442e-02 5.068457e-02
-1.128205 4.330694e-02 6.235741e-02
-0.923077 5.344755e-02 6.191401e-02
-0.717949 6.324468e-02 5.583147e-02
-0.512821 7.175402e-02 6.326347e-02
-0.307692 7.805385e-02 9.362840e-02
-0.102564 8.140824e-02 1.008225e-01
0.102564 8.140824e-02 6.235792e-02
0.307692 7.805385e-02 4.776633e-02
0.512821 7.175402e-02 5.470069e-02
0.717949 6.324468e-02 4.940951e-02
0.923077 5.344755e-02 3.896836e-02
1.128205 4.330694e-02 3.162236e-02
1.333333 3.364442e-02 1.748825e-02
1.538462 2.506079e-02 7.328682e-03
1.743590 1.789790e-02 4.497094e-03
1.948718 1.225563e-02 5.394483e-03
2.153846 8.046278e-03 7.521996e-03
2.358974 5.065011e-03 5.789346e-03
2.564103 3.056973e-03 1.955403e-03
2.769231 1.769004e-03 4.090775e-04
2.974359 9.815038e-04 9.151466e-05
3.179487 5.221329e-04 3.335142e-05
3.384615 2.663153e-04 2.377408e-05
3.589744 1.302378e-04 3.272659e-05
3.794872 6.106663e-05 7.717242e-05
4.000000 2.745344e-05 2.666780e-04

Moments of Latent Variable Distributions (group 1, 2, etc)
Mean: 0.000000 -0.446339
s.d.: 0.999646 1.131774

Chapter 2: Examples 50

The output at the top of the log file that is produced by the allocate_items_dist
and read_examinees commands is the same as that described in the first example. The
information for each EM iteration produced by the EM_steps command includes the largest
relative item parameter difference and the marginal posterior mode that were described in
the first example as the first and third number after the iteration number. The second
number after the iteration number was not present in the one group example. This number
is the maximum relative difference in the estimated probabilities of discrete latent variable
distribution for group 2 from the previous to current iteration (group 1 probabilities are
not included because they were not estimated). This is analogous to the maximum relative
difference in the estimated item parameters (the first number after the iteration number).
Only the maximum relative difference in the item parameter estimates is used to determine
whether the convergence criterion is met. The maximum relative difference in the latent
distribution probabilities is presented, but is not used in determining whether the conver-
gence criterion is met. This could be changed by modifying the source code of the EM_steps
function in the file ‘icl.tcl’. The convergence criterion is met after 50 iterations.

The -item_param option of the print command results in the item parameter estimates
being printed in the log file. The first 24 item parameter estimates correspond to unique
items on Form Y, the next 12 item parameter estimates correspond to common item on
Form X and Y, and the last 24 item parameter estimates correspond to unique items on
Form X. These item parameter estimates can be compared to the item parameter estimates
reported in Table 6.8 of Kolen and Brennan (1995). Kolen and Brennan (1995) estimated
the item parameters using separate estimation. Thus, there are two sets of item parameter
estimates for the common items in Table 6.8 of Kolen and Brennan (1995), and the item
parameter estimates for the items on Form X have been transformed to be on the scale of
the item parameter estimates for Form Y using the two sets of common item parameter
estimates. In the concurrent run presented in this section parameter estimates for all items
are obtained in one run, so there is only one set of item parameter estimates for the common
items, and there is no scaling step needed to put the item parameter estimates for Form X
and Y on the same scale.

The -latent_dist option of the print command results in the latent variable distri-
butions for all groups being printed in the log file. The points, which are common to all
groups, are printed first followed by the associated probabilities for groups 1 (Form Y) and
2 (Form X). The -latent_dist_moments option of the print command results in the mean
and standard deviation of the latent variable distributions for both groups being printed. In
this case the latent variable distribution for group 1 was fixed to be a discrete approximation
to a standard normal distribution across all iterations. Thus, the mean and standard devi-
ation of the latent variable distribution for group 1 are approximately 0 and 1. The latent
variable distribution for group 2 was estimated and its mean is less than 0 and standard
deviation is greater than 1. Thus, group 2, who took Form X is a lower performing group
than group 1, who took Form Y.

It may be more reasonable to estimate the latent variable distribution for Group 1 rather
than fixing it as a discrete approximation of a standard normal distribution. The following
log file (‘mondat3.log’) shows output from running the command file ‘mondat3.tcl’ in
which the latent variable distributions for both groups are estimated. The only change
from the command file ‘mondat2.tcl’, besides the change of the log file name, is that
the ‘EM_steps’ command is changed to ‘EM_steps -estim_dist -scale_points -max_iter

Chapter 2: Examples 51

200’. The -estim_dist option indicates the latent variable distribution will be estimated
for Group 1. The -scale_points option results in the points of the discrete latent variable
distribution being linearly transformed so the mean and standard deviation of the Form X
distribution are 0 and 1 after each M–step. The item parameters are also transformed using
the same scale transformation. In the ‘mondat3.tcl’ run the points of the latent variable
distribution were not changed during the EM iterations.

IRT Command Language (ICL)
Version 0.020301

Feb 28, 2002 06:30

Command file mondat3.tcl
--
#
mondat3.tcl
#
Example data from Chapters 4 and 6 Kolen and
Brennan (1995)
Estimate item parameters for Form Y and Form X
items while at the same time estimating
the latent variable distribution of the groups
that took Form X and Form Y. After each M-step
the points of the discrete latent variable distribution
are linearly transformed so the mean and standard
deviation of the Form X distribution are 0 and 1.
The item parameters are also tranformed using
the same scale transformation.

Write output to log file mondat3.log
output -log_file mondat3.log

24 unique items on each of two forms and
12 common items for a total of 60
items. Two groups specified
for multiple group estimation
allocate_items_dist 60 -num_groups 2

Read examinee item responses from file mondat.dat.
Each record contains the responses to
60 items for an examinee in columns 2-61.
The first 24 items are the unique items on
Form Y, the second 12 items are common items,
and the last 24 items are unique items on
Form X. An integer in column 1 gives
the examinee group: 1 for examinees
who took Form Y, and 2 for examinees
who took Form X
read_examinees mondat.dat {@2 60i1} {i1}

Chapter 2: Examples 52

Compute starting values for item parameter estimates
starting_values_dichotomous

Perform EM iterations for computing item parameter estimates
and probabilities of latent variable distributions for
groups 1 and 2. Scale points of latent variable distribution
after each M-step so the mean and s.d. in group 1 are
0 and 1. Allow a maximum of 200 EM iterations.
EM_steps -estim_dist -scale_points -max_iter 200

Print item parameter estimates, discrete latent
variable distributions, and mean and s.d. of
latent variable distributions.
print -item_param -latent_dist -latent_dist_moments

end of run
release_items_dist
--

Number of items: 60
Number of latent variable points: 40
Number of examinee groups: 2

Default prior for a-parameters:
beta a: 1.750 b: 3.000 lower limit: 0.000 upper limit: 3.000

Default prior for b-parameters:
beta a: 1.010 b: 1.010 lower limit: -6.000 upper limit: 6.000

Default prior for c-parameters:
beta a: 3.500 b: 4.000 lower limit: 0.000 upper limit: 0.500

Read 3293 examinee records from file mondat.dat

EM iterations
(iteration: parameter criterion, dist criterion,
marginal posterior mode)

1: 0.325684 0.792375 -67322.8364
2: 0.106845 0.046843 -67309.3143
3: 0.071285 0.044809 -67301.8025
4: 0.053653 0.041071 -67296.5794
5: 0.042593 0.037904 -67292.7518

To save space results for iterations 6–174 have not been included

175: 0.001018 0.007281 -67274.2664
176: 0.001012 0.007297 -67274.2602
177: 0.001007 0.007313 -67274.2539
178: 0.001002 0.007328 -67274.2477
179: 0.000997 0.007342 -67274.2416

Chapter 2: Examples 53

Item Parameter Estimates
(a, b, c for 3PL, 2PL, 1PL; a, b1, b2, ... for GPCM, PCM)
1 0.856376 -1.325967 0.246916
2 0.487127 -0.308145 0.132614
3 0.606201 -0.589769 0.234970
4 0.657235 -1.129413 0.346636
5 1.521015 0.212157 0.330804
6 0.613257 0.633843 0.374111
7 0.974694 -0.222569 0.208512
8 1.089917 -0.670979 0.148203
9 0.999468 0.148514 0.182302
10 0.816117 -0.154468 0.133906
11 1.047074 0.629296 0.262510
12 0.799468 0.956607 0.277609
13 1.203771 0.013975 0.229156
14 1.013782 0.475916 0.181176
15 0.942895 0.075590 0.192940
16 1.637067 0.570556 0.268125
17 1.526627 0.655456 0.277041
18 1.240873 0.458696 0.208509
19 1.612816 1.041685 0.241950
20 1.292494 0.712256 0.133058
21 1.525688 1.231749 0.198312
22 1.310676 0.880316 0.117730
23 1.827061 1.528146 0.106721
24 1.715056 1.664267 0.085240
25 0.473728 -0.874199 0.290485
26 0.635767 -0.858958 0.350641
27 0.692582 -0.455842 0.159864
28 0.646188 -0.287047 0.122906
29 1.323328 0.593159 0.325955
30 0.893672 -0.139091 0.050774
31 0.292861 2.142789 0.138894
32 1.787622 0.620910 0.250937
33 1.816469 0.929786 0.199521
34 0.749538 1.695184 0.081839
35 1.500056 1.025111 0.072655
36 1.379407 1.683228 0.117269
37 0.473628 -2.360666 0.238489
38 0.778453 -0.846108 0.146216
39 1.611046 0.119856 0.291455
40 1.137375 -0.356627 0.340054
41 1.047684 0.180112 0.363714
42 1.349114 -0.345247 0.293295
43 1.063927 0.628013 0.378435
44 1.083287 0.355466 0.256584
45 1.409989 0.080253 0.273988
46 1.193209 0.418889 0.174239
47 1.075626 0.281456 0.280996

Chapter 2: Examples 54

48 1.033795 0.200959 0.260957
49 0.676102 0.043045 0.142039
50 1.259503 0.562194 0.221469
51 1.000726 0.668022 0.253145
52 1.205289 0.203870 0.071685
53 0.531999 1.009371 0.155838
54 1.012227 0.674949 0.097987
55 1.611799 1.039383 0.161956
56 1.089525 1.076782 0.147321
57 1.364772 1.398204 0.245398
58 0.969074 1.228746 0.091101
59 0.426559 3.453718 0.119237
60 0.948066 2.613977 0.108208

Discrete Latent Variable Distributions
(point, probability for group 1, 2, etc)
-3.364293 1.803924e-04 3.836721e-03
-3.187785 3.439385e-04 6.775798e-03
-3.011276 6.478347e-04 1.061181e-02
-2.834768 1.220672e-03 1.458895e-02
-2.658260 2.319404e-03 1.751716e-02
-2.481751 4.432547e-03 1.845248e-02
-2.305243 8.344814e-03 1.739466e-02
-2.128735 1.479886e-02 1.529827e-02
-1.952227 2.310089e-02 1.343777e-02
-1.775718 2.940365e-02 1.292471e-02
-1.599210 2.894974e-02 1.499117e-02
-1.422702 2.243898e-02 2.214244e-02
-1.246193 1.559435e-02 3.923349e-02
-1.069685 1.238178e-02 6.626064e-02
-0.893177 1.455648e-02 7.615204e-02
-0.716669 2.704838e-02 5.109651e-02
-0.540160 5.800437e-02 3.077938e-02
-0.363652 8.605510e-02 3.968360e-02
-0.187144 7.997061e-02 1.073430e-01
-0.010635 7.311614e-02 1.177310e-01
0.165873 6.984679e-02 3.405008e-02
0.342381 5.393648e-02 2.858519e-02
0.518889 6.512597e-02 7.194925e-02
0.695398 9.282164e-02 4.820522e-02
0.871906 6.094744e-02 2.622353e-02
1.048414 4.582051e-02 3.776838e-02
1.224923 3.137408e-02 2.441026e-02
1.401431 2.009088e-02 5.311097e-03
1.577939 3.411260e-02 2.108668e-03
1.754447 2.047829e-02 4.140958e-03
1.930956 4.673844e-04 1.208310e-02
2.107464 2.329692e-06 7.573391e-03
2.283972 5.642149e-08 6.068035e-04

Chapter 2: Examples 55

2.460481 2.188147e-08 1.684229e-05
2.636989 7.299836e-08 6.483347e-07
2.813497 6.986436e-07 9.188993e-08
2.990006 8.306627e-06 7.331026e-08
3.166514 7.679156e-05 3.431198e-07
3.343022 4.471454e-04 7.985940e-06
3.519530 1.533559e-03 7.065380e-04

Moments of Latent Variable Distributions (group 1, 2, etc)
Mean: 0.000000 -0.414384
s.d.: 1.000000 1.111024

The format of the output is the same as for ‘mondat2.log’. In this case it took 179
iterations for the convergence criterion to be met. Note that the points of the latent variable
distribution are different from those given in ‘mondat2.log’. The points have been adjusted
at each M–step after new probabilities for Group 1 have been estimated so that the mean
and standard deviation of the distribution for Group 1 are 0 and 1.

Lewis (1985) suggested that fixing the points of a discrete latent variable distribution
fixes the scale of the latent variable and it is not necessary to adjust the points after
each M–step so the mean and standard deviation for one of the groups was fixed at some
value. The following log file ‘mondat4.log’ shows the output from running the command file
‘mondat4.tcl’ in which the -scale_points option is not used with the EM_steps command.
When this option is not used the distributions for both groups are estimated, but the points
are not adjusted after each M–step.

IRT Command Language (ICL)
Version 0.020301

Feb 28, 2002 06:31

Command file mondat4.tcl
--
#
mondat4.tcl
#
Example data from Chapters 4 and 6 Kolen and
Brennan (1995)
Estimate item parameters for Form Y and Form X
items while at the same time estimating
the latent variable distribution of the groups
that took Form X and Form Y.

Write output to log file mondat4.log
output -log_file mondat4.log

24 unique items on each of two forms and
12 common items for a total of 60
items. Two groups specified
for multiple group estimation
allocate_items_dist 60 -num_groups 2

Chapter 2: Examples 56

Read examinee item responses from file mondat.dat.
Each record contains the responses to
60 items for an examinee in columns 2-61.
The first 24 items are the unique items on
Form Y, the second 12 items are common items,
and the last 24 items are unique items on
Form X. An integer in column 1 gives
the examinee group: 1 for examinees
who took Form Y, and 2 for examinees
who took Form X
read_examinees mondat.dat {@2 60i1} {i1}

Compute starting values for item parameter estimates
starting_values_dichotomous

Perform EM iterations for computing item parameter estimates
and probabilities of latent variable distributions for
groups 1 and 2. Points of the latent variable distribution
will not be adjusted after each M-step so the mean and
standard deviation of the distribution in Group 1 are
zero and one. Allow a maximum of 200 EM iterations.
EM_steps -estim_dist -max_iter 200

Print item parameter estimates and discrete latent
variable distributions.
print -item_param -latent_dist -latent_dist_moments

end of run
release_items_dist
--

Number of items: 60
Number of latent variable points: 40
Number of examinee groups: 2

Default prior for a-parameters:
beta a: 1.750 b: 3.000 lower limit: 0.000 upper limit: 3.000

Default prior for b-parameters:
beta a: 1.010 b: 1.010 lower limit: -6.000 upper limit: 6.000

Default prior for c-parameters:
beta a: 3.500 b: 4.000 lower limit: 0.000 upper limit: 0.500

Read 3293 examinee records from file mondat.dat

EM iterations
(iteration: parameter criterion, dist criterion,
marginal posterior mode)

1: 0.325684 0.792375 -67323.1840

Chapter 2: Examples 57

2: 0.105335 0.046843 -67309.8870
3: 0.070159 0.044621 -67302.4966
4: 0.052663 0.040925 -67297.3592
5: 0.041683 0.037754 -67293.5908

To save space results for iterations 6–101 have not been included

102: 0.001043 0.004270 -67272.7131
103: 0.001032 0.004273 -67272.6868
104: 0.001021 0.004276 -67272.6608
105: 0.001010 0.004279 -67272.6351
106: 0.001000 0.004282 -67272.6095

Item Parameter Estimates
(a, b, c for 3PL, 2PL, 1PL; a, b1, b2, ... for GPCM, PCM)
1 0.792187 -1.488947 0.250090
2 0.449416 -0.396068 0.131935
3 0.560405 -0.695451 0.235830
4 0.611584 -1.259582 0.352839
5 1.413598 0.172905 0.331471
6 0.570020 0.631022 0.375348
7 0.906584 -0.292693 0.211084
8 1.005828 -0.787173 0.147190
9 0.927100 0.104662 0.183414
10 0.754307 -0.226343 0.133831
11 0.973068 0.622823 0.263161
12 0.742809 0.976510 0.278349
13 1.115883 -0.042044 0.229698
14 0.941303 0.457787 0.182049
15 0.873259 0.024504 0.193532
16 1.524570 0.559444 0.268728
17 1.426198 0.651852 0.278065
18 1.153788 0.438952 0.209293
19 1.505390 1.066314 0.242397
20 1.200714 0.711681 0.133490
21 1.421214 1.270939 0.198612
22 1.220486 0.893008 0.118370
23 1.718087 1.587893 0.107191
24 1.604955 1.734869 0.085500
25 0.437941 -1.000497 0.292070
26 0.587873 -0.982818 0.352770
27 0.641365 -0.547027 0.162099
28 0.596239 -0.371596 0.122613
29 1.227959 0.582892 0.326236
30 0.826785 -0.208243 0.051555
31 0.269964 2.259852 0.138474
32 1.665245 0.613380 0.251479
33 1.690027 0.945642 0.199753
34 0.696628 1.771485 0.082339

Chapter 2: Examples 58

35 1.393049 1.048473 0.072851
36 1.277264 1.759533 0.117280
37 0.437292 -2.617455 0.238206
38 0.718595 -0.974767 0.147245
39 1.491584 0.070535 0.291452
40 1.054100 -0.440028 0.342014
41 0.974644 0.138248 0.364723
42 1.257864 -0.424564 0.296475
43 0.989702 0.620969 0.379072
44 1.005329 0.326430 0.257210
45 1.310624 0.030317 0.275020
46 1.109688 0.395445 0.175172
47 0.996796 0.246629 0.281574
48 0.956088 0.158842 0.261263
49 0.627481 -0.006744 0.144300
50 1.171036 0.550009 0.222195
51 0.930581 0.665177 0.254119
52 1.116668 0.162424 0.072275
53 0.493380 1.032689 0.156504
54 0.939198 0.671059 0.098524
55 1.500060 1.063250 0.162197
56 1.008182 1.104636 0.147332
57 1.266904 1.451279 0.245540
58 0.899117 1.268914 0.091459
59 0.396571 3.664500 0.119563
60 0.879832 2.765618 0.108336

Discrete Latent Variable Distributions
(point, probability for group 1, 2, etc)
-4.000000 8.573090e-05 1.759295e-03
-3.794872 1.769717e-04 3.341082e-03
-3.589744 3.567996e-04 5.769281e-03
-3.384615 7.091941e-04 8.972447e-03
-3.179487 1.400644e-03 1.247364e-02
-2.974359 2.754413e-03 1.545960e-02
-2.769231 5.341754e-03 1.718867e-02
-2.564103 9.935387e-03 1.750107e-02
-2.358974 1.686753e-02 1.699215e-02
-2.153846 2.448576e-02 1.675436e-02
-1.948718 2.861434e-02 1.813852e-02
-1.743590 2.644297e-02 2.302729e-02
-1.538462 2.069402e-02 3.429648e-02
-1.333333 1.637503e-02 5.299516e-02
-1.128205 1.663285e-02 6.704495e-02
-0.923077 2.499488e-02 5.840790e-02
-0.717949 4.788184e-02 4.305661e-02
-0.512821 7.852908e-02 4.909310e-02
-0.307692 8.836300e-02 9.805626e-02
-0.102564 8.353821e-02 1.161418e-01

Chapter 2: Examples 59

0.102564 7.381653e-02 5.094832e-02
0.307692 5.958968e-02 3.972880e-02
0.512821 7.315067e-02 6.565200e-02
0.717949 9.569996e-02 5.007554e-02
0.923077 6.267682e-02 3.443563e-02
1.128205 4.251842e-02 3.500934e-02
1.333333 3.074335e-02 1.713434e-02
1.538462 2.680885e-02 5.252996e-03
1.743590 3.137364e-02 3.602199e-03
1.948718 7.387146e-03 7.021542e-03
2.153846 1.680712e-04 1.042986e-02
2.358974 3.080710e-06 3.425411e-03
2.564103 3.670952e-07 2.742574e-04
2.769231 3.729715e-07 1.455538e-05
2.974359 1.430882e-06 1.393448e-06
3.179487 8.794689e-06 4.257355e-07
3.384615 5.057309e-05 4.874361e-07
3.589744 2.102855e-04 1.916602e-06
3.794872 5.768263e-04 2.104291e-05
4.000000 1.034723e-03 5.002338e-04

Moments of Latent Variable Distributions (group 1, 2, etc)
Mean: -0.060974 -0.509101
s.d.: 1.087421 1.204460

In this case the EM iterations converged in less than 200 iterations. Note that the points
of the latent distribution are the same as those in ‘mondat2.log’ — they have not been
changed during the EM iterations. Consequently, the mean and standard deviation for
Group 1 differs from zero and one, as does the mean and standard deviation for Group 2.

The Group 1 latent variable distributions in ‘mondat2.log’ and ‘mondat4.log’ have
the same points, and the latent variable distributions for Group 1 in ‘mondat2.log’ and
‘mondat3.log’ both have a mean and standard deviation of zero and one. Are the parameter
estimates in ‘mondat2.log’ and ‘mondat4.log’ on the same scale (points the same), or are
the parameter estimates for ‘mondat2.log’ and ‘mondat3.log’ on the same scale (mean and
s.d. in Group 1 the same)? Plotting the parameter estimates shows that the parameter
estimates from ‘mondat2.log’ and ‘mondat4.log’ appear to be on the same scale (the
parameters are scattered about an identity line), whereas the parameter estimates from
‘mondat2.log’ and ‘mondat3.log’ do not appear to be on the same scale (the a–parameter
and b–parameter estimates are scattered around a line that is not an identity line). A
comparison of the parameter estimates from ‘mondat3.log’ and ‘mondat4.log’ shows that
are very similar to one another but are on different scales (they fall very near to a straight
line that is not the identity line). These results suggest that Lewis (1985) was correct and
the scale is fixed by the fixing the points of the discrete latent variable distribution. This
suggests a preference for not using the -scale_points option when the -estim_dist option
is used with the EM_steps command.

Chapter 2: Examples 60

2.3 EAP and MLE Theta Estimates for Examinees

In this example maximum likelihood (MLE) and Bayesian estimates of latent proficiency
are computed for individual examinees. The Bayesian estimates are computed using the
mean of the posterior latent variable distribution for each examinee. These Bayesian es-
timates are referred to as EAP (expected a posterior) estimates. The data used are the
same as for the example in Section 2.1 — 1638 examinees taking Form Y of a 36 item test.
This example reads in previously computed item parameter estimates, and item responses
for all examinees. This information is used to compute MLE and EAP estimates of latent
proficiency for all 1638 examinees. A number correct score is also computed and written for
each examinee. The item parameter estimates needed in this example could be obtained by
adding the following commands to the command file in Section 2.1 (‘mondaty.tcl’) before
the release_items_dist command.

Write parameter estimates with 8 digits after
the decimal point
write_item_param mondaty.par -format %.8f

These commands write the item parameter estimates to a file named ‘mondaty.par’. The
following command file (mondaty_theta.tcl) illustrates how to use the item parameter es-
timates in ‘mondaty.par’ and item response data in ‘mondaty.dat’ to compute posterior
latent variable distributions for each examinee and write the mean of these posterior distri-
butions, along with number correct score, to a file ‘mondaty.theta’.

#
mondaty_theta.tcl
#
Compute EAP and MLE latent variable estimates for
each examinee who took Form Y reading using the
previously computed item parameter estimates.
Write EAP and MLE estimates and number correct score
for each examinee to file ’mondaty.theta’.
Example data from Chapters 4 and 6 Kolen and
Brennan (1995)

Supress written output from subsequent ICL commands
output -no_print

36 items to be modeled
allocate_items_dist 36

Read examinee item responses from file mondaty.dat.
Each record contains the responses to
36 items for an examinee in columns 1-36.
read_examinees mondaty.dat 36i1

Read previously computed item parameter estimates
read_item_param mondaty.par

Create E-step object needed to compute
posterior latent variable distributions for

Chapter 2: Examples 61

examinees
set estep [new_estep]

Use E-step object to compute posterior distribution
for each examinee. The second argument being equal to 1
indicates the posterior will be computed for each
examinee. The third argument being equal to 1 indicates
that the posterior for each examinee will be stored
with the examinee to allow the examinee_posterior_mean
command to be used for the examinee.
estep_compute $estep 1 1

E-step object only needed for the estep_compute command,
so can be deleted.
delete_estep $estep

Open file to contain estimates
set eapfile [open mondaty.theta w]

Write EAP and MLE estimates and number correct for each examinee on
a separate line of the output file
for {set i 1} {$i <= [num_examinees]} {incr i} {

compute number correct
set resp [examinee_responses $i]
set numcorrect 0
foreach r $resp {

if {$r > 0} then {incr numcorrect}
}

get examinee posterior mean (EAP estimate)
set eap [examinee_posterior_mean $i]

get examinee MLE estimate
set mle [examinee_theta_MLE $i -6.0 6.0]

Write EAP and MLE estimates and number correct. The first
argument to the format command indicates that the second and
third arguments to the format command will be written as
floating-point numbers with 6 digits after the decimal point and
that the fourth argument will be written as an integer, with
a tab character separating the numbers.
puts $eapfile [format "%.6f\t%.6f\t%d" $eap $mle $numcorrect]

}

close output file
close $eapfile

end of run

Chapter 2: Examples 62

release_items_dist

2.4 Pretest Item Calibration

This example illustrates estimation of pretest item statistics using simulated CAT data.
The simulated data are taken from Ban, Hanson, Wang, Yi, and Harris (2001). In this
simulated CAT there were 30 operational items administered to each examinee taken from
an operational item pool of 520 items. Each examinee also received the same 10 pretest
items. The goal is to use item parameter estimates for the operational items along with the
item response data to estimate item parameters for the pretest items. This example shows
how to use icl to implement what Ban, et. al. (2001) refer to as the MMLE/Multiple–EM
Cycle method of pretest item estimation.

Below the output produced by the command file ‘pretest.tcl’ is given. This output
includes a listing of the command file. This command file uses the command ReadItemResp
which reformats data from the input file into a form that can be used by the icl add_
examinee command. This command is defined in the file ‘pretest_dat.tcl’, which is
presented in Section 2.9.

IRT Command Language (ICL)
Version 0.020301

Feb 28, 2002 06:43

Command file pretest.tcl
--
#
pretest.tcl
#
Implement MMLE/Multiple-EM Cycle
method of pretest item calibration and
scaling described in:
#
Ban, J., Hanson, B. A., Wang, T., Yi, Q., & Harris, D. J. (2001). A
comparative study of on-line pretest item-calibration/scaling methods
in computerized adaptive testing. Journal of Educational Measurement,
38(3), 191-212.

number of operational items administered
to each examinee
set adminOperItems 30

total number of operational items used for CAT
set totOperItems 520

number of pretest items administered to
each examinee
set preItems 10

write output to log file pretest.log

Chapter 2: Examples 63

output -log_file pretest.log

Total number of items is sum of number of operational
and pretest items
allocate_items_dist [expr {$totOperItems+$preItems}]

Create list of item numbers for operational items
set operItemNo [seq 1 520]

Set priors of all operational item parameters to none, since
operational item parameters are not estimated. This allows
any values of the operational item parameters to be read, even
those for which the prior density using the default prior is zero
(an error is reported if a parameter is read for which the
prior density is zero).

Set priors for a-parameters to none for operational items
items_set_prior 1 none {} $operItemNo

Set priors for b-parameters to none for operational items
items_set_prior 2 none {} $operItemNo

Set priors for c-parameters to none for operational items
items_set_prior 3 none {} $operItemNo

Read examinee item responses using command ReadItemResp
from file al40cf1.txt.
The ReadItemResp command is defined
in file pretest_dat.tcl.
source pretest_dat.tcl
ReadItemResp al40cf1.txt

Read item parameters for operational items
from file pool.par
read_item_param pool.par

Create list of item numbers for pretest items
set preItemNo [seq 521 530]

Compute starting values for pretest items.
The first argument (1) indicates all
items (including those answered correctly or
incorrectly by all examinees) and all examinees
(even those to get all items correct or all items
incorrect) will be used to
compute initial difficulties and proficiencies
from which the starting values are computed.
The second argument (0) indicates only
the pretest items, rather than all items, are

Chapter 2: Examples 64

used to compute the initial examinee proficiencies.
item_3PL_starting_values 1 0 $preItemNo

Create E-step object used to compute
examinee posterior distributions based
on operational items
set eoper [new_estep $operItemNo]

Compute examinee posterior distributions based on
only operation item responses, and store posteriors
for each examinee. The second argument (1)
indicates examinee posterior distributions
are computed. The third argument (1)
indicates that these posterior distributions
are stored for each examinee. The fourth
argument is an empty string which indicates
that n’s and r’s are not updated for
any items - the purpose of this command
is to compute examinee posterior distributions,
not n’s and r’s for any of the items.
estep_compute $eoper 1 1 {}

E-step object no longer needed, so delete
delete_estep $eoper

Create E-step object used in E-step
for computing pretest item parameter
estimates
set eall [new_estep]

Compute E-step for pretest items using
examinee posteriors computed with operational
items. The second argument (0) indicates
that examinee posterior distributions
are not computed. Instead, posterior
distributions previously computed and
stored (in estep_compute command above)
are used. The third argument (0) indicates
that examinee posterior distributions are
not stored for examinees (this is redundant,
given the second argument is zero but must
still be present).
estep_compute $eall 0 0 $preItemNo

Loop over EM iterations.
To implement the MMLE/One-EM Cycle method
discussed in Ban, et. al. use just one
iteration.
for {set iter 1} {$iter <= 100} {incr iter} {

Chapter 2: Examples 65

M-step
set maxreldiff [mstep_item_param -items $preItemNo]

E-step
Second argument to estep_compute (1) indicates
posterior distibutions will be computed
for examinees. These are used to update n’s and
r’s for items given by the item numbers
in the list that is the last argument.
The third argument to estep_compute (0) indicates
the examinee posterior distributions computed
will not be stored.
set loglike [estep_compute $eall 1 0 $preItemNo]

Write iteration information to log file and to screen
set iterinfo [format {%5d: %.6f %.4f} $iter $maxreldiff $loglike]
puts_log $iterinfo
puts $iterinfo

Quit EM iterations if convergence criterion is met
if {$maxreldiff < 0.001} then break

}

delete E-step object
delete_estep $eall

Write parameter estimates for pretest items to
log file. Uses global variable icl_logfileID
defined in icl.tcl.
puts_log "\nItem parameter estimates for pretest items"
write_item_param_channel $icl_logfileID -format %.6f -items $preItemNo

End of run
release_items_dist
--

Number of items: 530
Number of latent variable points: 40
Number of examinee groups: 1

Default prior for a-parameters:
beta a: 1.750 b: 3.000 lower limit: 0.000 upper limit: 3.000

Default prior for b-parameters:
beta a: 1.010 b: 1.010 lower limit: -6.000 upper limit: 6.000

Default prior for c-parameters:
beta a: 3.500 b: 4.000 lower limit: 0.000 upper limit: 0.500

1: 0.951852 -22816.2122

Chapter 2: Examples 66

2: 0.125647 -22807.7872
3: 0.027547 -22807.5322
4: 0.006083 -22807.5215
5: 0.001334 -22807.5211
6: 0.000290 -22807.5211

Item parameter estimates for pretest items
521 1.293347 0.843491 0.076837
522 1.097611 -0.909632 0.308161
523 0.825760 -0.259481 0.125992
524 1.360402 -0.123295 0.143632
525 1.336759 -0.572269 0.193322
526 1.318537 1.230668 0.170896
527 1.291393 0.598819 0.199266
528 1.223074 1.755223 0.074243
529 1.439228 -1.914188 0.218686
530 1.693259 0.267899 0.083983

Convergence was achieved in six EM iterations. Item parameter estimates for the 10
pretest items are printed at the end of the log file.

2.5 Multiple Group Estimation with Normal Distributions

This example is a continuation of the multiple group estimation example in Section 2.2.
The same data used for the example in Section 2.2 are used in this example, although in
this example the data are read in a different format. This example shows how to estimate
just the mean and standard deviation of the latent variable distribution in Group 2 using
fixed probabilities for the discrete latent variable distributions in Groups 1 and 2. This is
accomplished by allowing separate points for the discrete latent variable distributions for
Groups 1 and 2. For Group 1 the points are fixed throughout the EM iterations. For Group
2 the points are changed, although the weights are fixed, to allow the mean and standard
deviation of the discrete latent variable distribution for Group 2 to be updated during the
EM iterations.

This example uses the read_examinees_missing command to read the data from the
original separate data sets for the two forms rather than the merged data set used in the
example in Section 2.2. To allow different latent distribution points to be used for the
two examinee groups the -unique_points option is used with the allocate_items_dist
command.

The log file produced by the command file ‘mondat5.tcl’ is given below. The initial
discrete latent variable distribution is printed, as well as the discrete latent variable distri-
bution after the EM iterations. At the end of the EM iterations the points of the latent
variable distribution for Group 2 have changed, but the weights for Group 2 and the points
and weights for Group 1 have not changed.

IRT Command Language (ICL)
Version 0.020301

Feb 28, 2002 06:32

Chapter 2: Examples 67

Command file mondat5.tcl
--
#
mondat5.tcl
#
Example data from Chapters 4 and 6 Kolen and
Brennan (1995)
Estimate item parameters for Form Y and Form X
items while at the same time estimating
the mean and s.d. of the latent variable distribution
of the group that took Form X (Group 2).

Write output to log file mondat5.log
output -log_file mondat5.log

24 unique items on each of two forms and
12 common items for a total of 60
items. Two groups specified
for multiple group estimation.
The -unique_points option allows different
discrete latent distribution points to be
used for the different group. This allows
the mean and standard deviation of
group 2 to be estimated.
allocate_items_dist 60 -num_groups 2 -unique_points

Read examinee item responses for Form Y from
file mondaty.dat and item responses for Form X
from file mondatx.dat using read_examinees_missing
command.
Each record contains the responses to
items in columns 1-36. The responses
to the 12 common items on each form are in
columns 3, 6, 9, ..., 36, and the responses
to the 24 unique items on each form are in
the other columns (1, 2, 4, 5, ..., 35).

Item numbers are assigned such that the first 24
items are the unique items on Form Y,
the second 12 items are common items,
and the last 24 items are unique items on
Form X.

Item numbers for Form Y in the order in which
they are read from file mondaty.dat. Forms
are not read from the input record since the examinees
who take each form are read from separate files.
In this case integers need to be used as indices for
forms. The index of Form Y is 1.

Chapter 2: Examples 68

set items(1) [list 1 2 25 3 4 26 5 6 27 7 8 28 \
9 10 29 11 12 30 13 14 31 15 16 32 \
17 18 33 19 20 34 21 22 35 23 24 36]

Item numbers for Form X in the order in which
they are read from file mondatx.dat. Forms
are not read from the input record since the examinees
who take each form are read from separate files.
In this case integers need to be used as indices for
forms. The index of Form X is 2.
set items(2) [list 37 38 25 39 40 26 41 42 27 43 44 28 \

45 46 29 47 48 30 49 50 31 51 52 32 \
53 54 33 55 56 34 57 58 35 59 60 36]

Item responses are in columns 1-36 of input record
for both forms.
set respFmt(1) 36i1
set respFmt(2) 36i1

Read Form Y data (group 1)
The second argument being 1 indicates all examinees
read took the form associated with index 1 (Form Y).
The fifth argument being 1 indicates all examinees
are in group 1.
read_examinees_missing mondaty.dat 1 items respFmt 1

Read Form X data (group 2)
The second argument being 2 indicates all examinees
read took the form associated with index 2 (Form X).
The fifth argument being 2 indicates all examinees
are in group 2.
read_examinees_missing mondatx.dat 2 items respFmt 2

Compute starting values for item parameter estimates
starting_values_dichotomous

Perform EM iterations for computing item parameter estimates
and mean and s.d. of latent variable distribution for
group 2.
EM_steps -estim_dist_mean_sd

Print item parameter estimates and discrete latent
variable distributions, and moments of
latent variable distributions.
print -item_param -latent_dist -latent_dist_moments

end of run
release_items_dist
--

Chapter 2: Examples 69

Number of items: 60
Number of latent variable points: 40
Number of examinee groups: 2

Default prior for a-parameters:
beta a: 1.750 b: 3.000 lower limit: 0.000 upper limit: 3.000

Default prior for b-parameters:
beta a: 1.010 b: 1.010 lower limit: -6.000 upper limit: 6.000

Default prior for c-parameters:
beta a: 3.500 b: 4.000 lower limit: 0.000 upper limit: 0.500

Read 1638 examinee records from file mondaty.dat
Read 1655 examinee records from file mondatx.dat

EM iterations
(iteration: parameter criterion, mean criterion, sd criterion,
marginal posterior mode)

1: 0.325684 0.307720 0.085317 -67330.9426
2: 0.121390 0.022953 0.013473 -67308.9803
3: 0.069812 0.014435 0.015063 -67302.3718
4: 0.041066 0.010214 0.012612 -67299.7890
5: 0.023979 0.007613 0.010576 -67298.4860
6: 0.013849 0.005964 0.009086 -67297.6683
7: 0.009451 0.004884 0.007983 -67297.0721
8: 0.008185 0.004146 0.007137 -67296.5982
9: 0.007235 0.003621 0.006464 -67296.2041

10: 0.006493 0.003229 0.005911 -67295.8689
11: 0.005892 0.002923 0.005441 -67295.5807
12: 0.005389 0.002674 0.005033 -67295.3316
13: 0.004956 0.002465 0.004670 -67295.1158
14: 0.004576 0.002283 0.004343 -67294.9284
15: 0.004236 0.002122 0.004046 -67294.7658
16: 0.003930 0.001976 0.003772 -67294.6245
17: 0.003651 0.001843 0.003520 -67294.5018
18: 0.003396 0.001721 0.003286 -67294.3952
19: 0.003160 0.001607 0.003069 -67294.3025
20: 0.002942 0.001502 0.002866 -67294.2220
21: 0.002740 0.001404 0.002677 -67294.1521
22: 0.002553 0.001312 0.002500 -67294.0913
23: 0.002379 0.001226 0.002335 -67294.0385
24: 0.002217 0.001146 0.002181 -67293.9926
25: 0.002040 0.001071 0.002037 -67293.9527
26: 0.001927 0.001001 0.001901 -67293.9180
27: 0.001798 0.000935 0.001776 -67293.8878
28: 0.001677 0.000874 0.001658 -67293.8616
29: 0.001563 0.000817 0.001548 -67293.8388
30: 0.001457 0.000764 0.001445 -67293.8190
31: 0.001359 0.000714 0.001349 -67293.8018

Chapter 2: Examples 70

32: 0.001267 0.000667 0.001259 -67293.7868
33: 0.001181 0.000623 0.001175 -67293.7738
34: 0.001101 0.000582 0.001096 -67293.7625
35: 0.001027 0.000544 0.001023 -67293.7526
36: 0.000957 0.000508 0.000955 -67293.7440

Item Parameter Estimates
(a, b, c for 3PL, 2PL, 1PL; a, b1, b2, ... for GPCM, PCM)
1 0.904065 -1.342600 0.209782
2 0.472086 -0.365138 0.121636
3 0.573082 -0.776638 0.177935
4 0.674595 -1.204559 0.310948
5 1.341454 0.127767 0.317220
6 0.498942 0.447334 0.325796
7 0.908865 -0.344550 0.175079
8 1.072157 -0.776767 0.104713
9 0.897653 0.048058 0.155941
10 0.762528 -0.270404 0.099967
11 0.883926 0.580379 0.242801
12 0.654135 0.940711 0.253342
13 1.064732 -0.114612 0.195305
14 0.881212 0.408263 0.159102
15 0.823425 -0.079773 0.144293
16 1.395526 0.531817 0.258702
17 1.317010 0.631790 0.269624
18 1.095121 0.404573 0.195341
19 1.350874 1.092516 0.238634
20 1.084274 0.692115 0.118706
21 1.207214 1.329384 0.192204
22 1.109889 0.896887 0.109516
23 1.381480 1.716702 0.103132
24 1.296218 1.904260 0.082859
25 0.450195 -1.103938 0.233453
26 0.607664 -1.061523 0.293607
27 0.654993 -0.597720 0.118159
28 0.608414 -0.415396 0.087000
29 1.153304 0.567131 0.318498
30 0.846807 -0.214362 0.036832
31 0.272671 2.192607 0.129640
32 1.567267 0.604057 0.247199
33 1.547175 0.963907 0.197080
34 0.639390 1.838167 0.074147
35 1.269842 1.075187 0.068386
36 1.132177 1.867853 0.115002
37 0.509168 -2.300033 0.214556
38 0.771774 -0.933231 0.123109
39 1.462344 0.064269 0.288840
40 0.993275 -0.537367 0.297272
41 0.908665 0.079528 0.343232

Chapter 2: Examples 71

42 1.168415 -0.514173 0.252219
43 0.911395 0.600598 0.367448
44 0.970805 0.311458 0.248061
45 1.243030 0.002410 0.262458
46 1.070866 0.383164 0.166861
47 0.926583 0.204012 0.262102
48 0.894838 0.111030 0.239211
49 0.638914 -0.034594 0.126210
50 1.106195 0.546097 0.215084
51 0.880720 0.661729 0.245532
52 1.109415 0.153550 0.065874
53 0.485861 0.989449 0.141474
54 0.902095 0.665986 0.089723
55 1.417103 1.092786 0.160834
56 0.972486 1.126737 0.144983
57 1.214783 1.492747 0.245017
58 0.888044 1.283014 0.089996
59 0.431652 3.532102 0.124595
60 0.874993 2.797930 0.108361

Discrete Latent Variable Distribution for Group 1
-4.000000 2.745344e-05
-3.794872 6.106663e-05
-3.589744 1.302378e-04
-3.384615 2.663153e-04
-3.179487 5.221329e-04
-2.974359 9.815038e-04
-2.769231 1.769004e-03
-2.564103 3.056973e-03
-2.358974 5.065011e-03
-2.153846 8.046278e-03
-1.948718 1.225563e-02
-1.743590 1.789790e-02
-1.538462 2.506079e-02
-1.333333 3.364442e-02
-1.128205 4.330694e-02
-0.923077 5.344755e-02
-0.717949 6.324468e-02
-0.512821 7.175402e-02
-0.307692 7.805385e-02
-0.102564 8.140824e-02
0.102564 8.140824e-02
0.307692 7.805385e-02
0.512821 7.175402e-02
0.717949 6.324468e-02
0.923077 5.344755e-02
1.128205 4.330694e-02
1.333333 3.364442e-02
1.538462 2.506079e-02

Chapter 2: Examples 72

1.743590 1.789790e-02
1.948718 1.225563e-02
2.153846 8.046278e-03
2.358974 5.065011e-03
2.564103 3.056973e-03
2.769231 1.769004e-03
2.974359 9.815038e-04
3.179487 5.221329e-04
3.384615 2.663153e-04
3.589744 1.302378e-04
3.794872 6.106663e-05
4.000000 2.745344e-05

Discrete Latent Variable Distribution for Group 2
-4.699982 2.745344e-05
-4.480500 6.106663e-05
-4.261018 1.302378e-04
-4.041536 2.663153e-04
-3.822054 5.221329e-04
-3.602572 9.815038e-04
-3.383090 1.769004e-03
-3.163608 3.056973e-03
-2.944126 5.065011e-03
-2.724644 8.046278e-03
-2.505162 1.225563e-02
-2.285680 1.789790e-02
-2.066198 2.506079e-02
-1.846716 3.364442e-02
-1.627234 4.330694e-02
-1.407752 5.344755e-02
-1.188270 6.324468e-02
-0.968788 7.175402e-02
-0.749306 7.805385e-02
-0.529824 8.140824e-02
-0.310342 8.140824e-02
-0.090860 7.805385e-02
0.128622 7.175402e-02
0.348104 6.324468e-02
0.567586 5.344755e-02
0.787068 4.330694e-02
1.006550 3.364442e-02
1.226032 2.506079e-02
1.445513 1.789790e-02
1.664995 1.225563e-02
1.884477 8.046278e-03
2.103959 5.065011e-03
2.323441 3.056973e-03
2.542923 1.769004e-03
2.762405 9.815038e-04

Chapter 2: Examples 73

2.981887 5.221329e-04
3.201369 2.663153e-04
3.420851 1.302378e-04
3.640333 6.106663e-05
3.859815 2.745344e-05

Moments of Latent Variable Distributions (group 1, 2, etc)
Mean: 0.000000 -0.420083
s.d.: 0.999646 1.069596

2.6 Bootstraping Item Parameter Estimates

This example shows how to use the bootstrap_sample command to bootstrap item
parameter estimation. This example uses the same data used in the example of Section 2.1.
Bootstrap samples are generated, and for each bootstrap sample item parameter estimates
are computed. The item parameter estimates for each sample are saved. The bootstrap
results can be used to compute standard errors or confidence intervals for item parameter
estimates.

#
mondaty_boot.tcl
#
Bootstrap item parameter estimates using data mondaty.dat.
For each bootstrap replication the parameter
estimates for all items are written to
one line of the output file.

Number of bootstrap replications.
Probably should be at least 100 to compute
standard errors of item parameter estimates.
set nboot 10

Do not print any output to log file
output -no_print

36 items
allocate_items_dist 36

Read item responses from mondaty.dat
read_examinees mondaty.dat 36i1

Open file to contain parameter estimates
for each bootstrap sample.
set fileID [open mondaty_boot.out w]

Set seed for random number generator used
for bootstrap
bootstrap_seed 295736287

loop over bootstrap replications

Chapter 2: Examples 74

foreach b [seq 1 $nboot] {

generate bootstrap sample
bootstrap_sample

calculate starting values for item parameters
starting_values_dichotomous

calculate item parameter estimates
set niter [EM_steps]

Print number of EM iterations used for this sample
puts "Bootstrap sample $b: $niter"

write parameter estimates for all items
to one line of output file separated by tabs
foreach i [seq 1 [num_items]] {

puts -nonewline $fileID \
[joinf [item_get_params $i] "\t" %.6f]

if {$i < [num_items]} {
puts -nonewline $fileID "\t"

} else {
puts -nonewline $fileID "\n"}

}
}

close output file
close $fileID

release_items_dist

2.7 Simulating Item Responses

This example demonstrates how to use icl to simulate item responses to 36 dichotomous
items modeled using the three–parameter logistic model and 4 polytomous items modeled
using the generalized partial credit model. The item parameter estimates for the 36 di-
chotomous items are those produced in the example of Section 2.1. The item parameter
estimates for the dichotomous items needed in this example could be obtained by adding
the following commands to the command file in Section 2.1 (‘mondaty.tcl’) before the
release_items_dist command.

Write parameter estimates with 8 digits after
the decimal point
write_item_param mondaty.par -format %.8f

Each line in the file written by the example contains simulated item responses for an
examinee in the first 40 columns, followed by a space and the simulated examinee proficiency
(theta).

#
sim_resp.tcl

Chapter 2: Examples 75

#
Simulate responses to 36 dichotomous items
using the three-parameter logistic (3PL) model,
and four polytomous items using the
generalized partial credit model (GPCM).

Number of examinees to simulate
set num_examinees 2000

Name of file to contain simulated responses
set sim_file sim_resp.dat

Name of file containing item parameters for dichotomous items
set par_file mondaty.par

Supress written output from subsequent ICL commands
output -no_print

Set default item parameter priors to none since
parameters are not being estimated, but only used
to generate item responses.
options -default_prior_a none -default_prior_b none
options -default_prior_c none

Create list giving model to use for each item.
The first 36 items are dichotomous items modeled
using the three-parameter logistic model, and the last four items
are 4 category polytomous items modeled by
the generalized partial credit model.
The variable ’model’ is a list containing
36 1’s followed by four 4’s.
set model [concat [rep 1 36] [rep 4 4]]

40 items to be modeled
allocate_items_dist 40 -models $model

Read item parameters for the 36 dichotomous items.
These are parameter estimates produced by
mondaty.tcl.
read_item_param $par_file

Assign parameters for the four polytomous items.
The order of the parameters for each item is: a, b1, b2, b3.
item_set_params 37 [list 1.0 0.5 0.0 1.0]
item_set_params 38 [list 0.75 -2.0 0.0 2.0]
item_set_params 39 [list 0.5 0.0 -0.5 -1.0]
item_set_params 40 [list 1.5 -1.0 0.5 0.0]

Set seed of random number generator used to

Chapter 2: Examples 76

simulate item responses.
simulate_seed 4967363

Set seed of random number generator used to
simulate examinee thetas.
normal_seed 5630837

Open file to contain simulated item responses
if [catch {open $sim_file w} fileID] {

error "Could not open $sim_file"
}

Loop over simulated examinees
for {set i 0} {$i < $num_examinees} {incr i} {

Simulate value of latent variable for an examinee
set theta [rand_normal]

Simulate item responses for an examinee
set r [simulate_response_str $theta]

Write simulated item responses followed by
a space and the simulated theta formatted
to have 6 digits after the decimal point.
puts $fileID "$r [format %.6f $theta]"

}

close $fileID

end of run
release_items_dist

2.8 Estimation of Dichotomous and Polytomous Items

This example illustrates estimating item parameters for a mix of 36 dichotomous items
modeled by the three–parameter logistic model, and 4 polytomous items modeled by the
generalized partial credit model. Each examinee takes all 40 items. The data used are
those simulated in the previous example. Below the output produced by the command file
‘mondaty_poly.tcl’ is given below.

IRT Command Language (ICL)
Version 0.020301

Feb 28, 2002 06:23

Command file mondaty_poly.tcl
--
#
mondaty_poly.tcl
#

Chapter 2: Examples 77

Estimate parameters for 36 dichotomous items
modeled using the three-parameter logistic (3PL) model,
and four polytomous items modeled using the
generalized partial credit model (GPCM) using
data simulated by polysim.tcl.

Name of file containing item responses
set resp_file sim_resp.dat

Write output to mondaty_poly.log
output -log_file mondaty_poly.log

Create list giving model to use for each item.
The first 36 items are dichotomous items modeled
using the three-parameter logistic model, and the last four items
are 4 category polytomous items modeled by
the generalized partial credit model.
The variable ’model’ is a list containing
36 1’s followed by four 4’s.
set model [concat [rep 1 36] [rep 4 4]]

40 items to be modeled
allocate_items_dist 40 -models $model

Read examinee item responses.
Responses to items are at the beginning
of each record
read_examinees $resp_file 40i1

Compute starting values for 3PL items
starting_values_dichotomous

Perform EM iterations for computing item parameter estimates.
EM_steps

Print item parameter estimates
print -item_param

end of run
release_items_dist
--

Number of items: 40
Number of latent variable points: 40
Number of examinee groups: 1

Default prior for a-parameters:
beta a: 1.750 b: 3.000 lower limit: 0.000 upper limit: 3.000

Default prior for b-parameters:

Chapter 2: Examples 78

beta a: 1.010 b: 1.010 lower limit: -6.000 upper limit: 6.000
Default prior for c-parameters:
beta a: 3.500 b: 4.000 lower limit: 0.000 upper limit: 0.500

Read 2000 examinee records from file sim_resp.dat

EM iterations
(iteration: parameter criterion, marginal posterior mode)

1: 1.000000 -49839.8854
2: 0.156021 -49813.0236
3: 0.050711 -49806.9268
4: 0.020425 -49804.6537
5: 0.013235 -49803.4438
6: 0.009502 -49802.6581
7: 0.007414 -49802.0978
8: 0.006466 -49801.6785
9: 0.005663 -49801.3557

10: 0.004977 -49801.1018
11: 0.004392 -49800.8988
12: 0.003877 -49800.7345
13: 0.003436 -49800.6002
14: 0.003056 -49800.4897
15: 0.002729 -49800.3982
16: 0.002457 -49800.3222
17: 0.002216 -49800.2589
18: 0.002002 -49800.2061
19: 0.001813 -49800.1619
20: 0.001644 -49800.1250
21: 0.001493 -49800.0941
22: 0.001360 -49800.0682
23: 0.001241 -49800.0466
24: 0.001133 -49800.0284
25: 0.001035 -49800.0133
26: 0.000945 -49800.0005

Item Parameter Estimates
(a, b, c for 3PL, 2PL, 1PL; a, b1, b2, ... for GPCM, PCM)
1 0.784632 -1.494295 0.216542
2 0.509761 -0.213177 0.174918
3 0.480782 -1.230036 0.171035
4 0.556064 -0.634404 0.230179
5 0.660246 -1.424265 0.235329
6 0.717690 -0.881038 0.313296
7 1.232697 0.008603 0.273957
8 0.406700 0.248871 0.275591
9 0.685756 -0.508994 0.191637
10 0.975991 -0.317898 0.202043
11 1.238413 -0.657687 0.183721
12 0.716615 -0.189311 0.144466

Chapter 2: Examples 79

13 0.827056 0.107852 0.184588
14 0.708840 -0.244146 0.114232
15 1.148081 0.551510 0.320706
16 0.849328 0.653557 0.269533
17 0.552343 0.959053 0.214288
18 0.900992 -0.033334 0.101448
19 1.004164 -0.117059 0.207532
20 0.848080 0.364010 0.150887
21 0.336177 2.703949 0.226385
22 0.894207 0.021954 0.183050
23 1.215446 0.505058 0.270023
24 1.320996 0.530310 0.210530
25 1.394385 0.597443 0.247531
26 1.010578 0.361881 0.208454
27 1.342652 0.967083 0.207249
28 1.310263 1.108302 0.230058
29 1.163402 0.789757 0.153663
30 0.851033 1.626691 0.095071
31 1.229428 1.410455 0.205899
32 0.938290 0.960744 0.107012
33 1.200863 1.030150 0.057851
34 1.460793 1.711502 0.113126
35 1.294422 1.889917 0.094107
36 0.867795 2.252590 0.134263
37 0.918482 0.695774 -0.096936 1.064804
38 0.755907 -1.959096 -0.031002 2.069068
39 0.486778 0.116498 -0.528472 -0.930240
40 1.469481 -1.098740 0.584653 -0.002246

2.9 Data Processing Using Tcl

Data processing was required to produce the some of the input data sets used in the
previous examples. The examples in this section show how to perform this data processing
using the built–in Tcl commands in icl. These examples illustration how the processing
needed to put data into a form usable by icl can be performed by icl itself without needing
to use a separate program.

The first example shows how separate data sets for Form X and Form Y were merged
into the data set used as input for the example in Section 2.2 (multiple group estimation).
This step can be avoided, as shown in Section 2.5, by using the read_examinees_missing
command to read the data directly from the two individual files instead of using a merged
data set.

The command file to merge these data sets (‘mergedat.tcl’) is given below. Comments
in the command file explain the commands used.

#
mergedat.tcl
#
Combine separate data files mondatx.dat and mondaty.dat for
Forms X and Y into a single data file (mondat.dat) where each line

Chapter 2: Examples 80

contains the responses of the unique items for Form Y,
the common items, and the unique items for Form X.
Responses to items an examinee did not take are indicated
by a period.

Convert item responses from file for one form
to format used for combined file.
The item responses to 36 items are in columns 1-36.
The common items are items 3, 6, ..., 36,
and the remaining items are unique to the form.
#
Arguments
file Name of file containing item responses for one form
outID Open file channel of output file
group Group number for this data (1 or 2)
proc WriteResponses {file outID group} {

try to open input file
if {[catch {open $file} inId]} {

error "Cannot open $file"
}

set string of missing responses to 24 unique
items on the form not taken
set missing [string repeat . 24]

read records in input file
while {[gets $inId line] > 0} {

initialize strings containing common and
unique items
set common {}
set unique {}

put item responses in string allresp
item responses are in columns 1-36
set allresp [string range $line 0 35]

loop over item responses separating
common and unique items
set itemno 1
foreach i [split $allresp {}] {

if {$itemno % 3 == 0} then {
append common $i

} else {
append unique $i

}
incr itemno

Chapter 2: Examples 81

}

Unique items for form taken by group 1
are written first, followed by common items,
then unique items for form taken by
group 2
if {$group == 1} then {

puts $outID "$unique$common$missing"
} else {

puts $outID "$missing$common$unique"
}

}

close $inId
}

open output file
if {[catch {open mondat.dat w} out]} {

error "Could not open output file"
}

write Form Y data
WriteResponses mondaty.dat $out 1

write Form X data
WriteResponses mondatx.dat $out 2

close output file
close $out

The second data processing example is the ReadItemResp procedure used in Section 2.4
(pretest calibration).

#
pretest_dat.tcl
#
Read simulated data for pretest example using
simulated data from Ban, Hanson, Wang, Yi, & Harris (2000).
Each simulated examinee received a CAT of 30 operational items
and 10 pretest items. The 30 operational items
were chosen from a pool of 520 items. The 10 pretest
items were taken by all examinees.
Each record in the input data set consists of
the item numbers of the operational items
taken by the examinee in columns 15-104 (3 digits per item)
and the operational item responses in columns 105-134.
The pretest item responses are in columns 145-154.
This procedure reads a record for each examinee, creates
an item response vector of 530 responses for the examinee
and calls the add_examinee command using the item response
vector.

Chapter 2: Examples 82

The argument is the file from which to read the data.
proc ReadItemResp {file} {

Number of items
set adminOperItems 30
set totOperItems 520
set preItems 10

open input file
if [catch {open $file} fileId] {

error "Cannot open $file"
}

loop over records
The gets command reads one record into variable ’line’
while {[gets $fileId line] > 0} {

initialize list of all item responses
set allResp [list]

Read operational item responses
set posNum 14
set posResp 104
for {set i 0} {$i < $adminOperItems} {incr i 1} {

Read item number of operational item
set operItemNo [string range $line $posNum \

[expr {$posNum+2}]]

strip leading zeros from item number
string trimleft $operItemNo 0

Assign item response for operational item
to array itemResp.
Change 1 to 0 and 2 to 1
(2 indicates a correct response and 1 an
incorrect response in the original file)
set r [string index $line $posResp]
set itemResp($operItemNo) [string map {1 0 2 1} $r]
incr posNum 3
incr posResp

}

write operational item responses to list of all responses
for {set i 1} {$i <= $totOperItems} {incr i} {

if {[info exists itemResp($i)] == 1} then {
add item response to list
lappend allResp $itemResp($i)

} else {
add -1 indicating the examinee did not respond

Chapter 2: Examples 83

to the item
lappend allResp -1

}
}

Remove all elements from itemResp to initialize
for next examinee.
unset itemResp

read pretest item responses and add them to
list of item responses
set preResp [string map {1 0 2 1} [string range $line 144 153]]
set allResp [concat $allResp [split $preResp {}]]

Add examinee to data used for estimation
add_examinee $allResp

}
close $fileId

}

Appendix A: Format Specifiers for C sprintf Function 84

Appendix A Format Specifiers for C sprintf
Function

This appendix describes the format specifiers used in the print, write_item_param_
channel, write_item_param, write_latent_dist_channel, and write_latent_dist
commands which follow the convention for the C sprintf function. This format specifier is
also used for the Tcl format command. This description was created by Paul B. Patton
(paul.b.patton@honeywell.com).

All format specifiers are in the following form, where square brackets indicate optional
parts:

%[flag][width][.prec]type

[flag] What flag specifies
------- ------------------------------------
none Right-justify; pad with 0 or blank

on left
- Left-justify; pad spaces on right
+ Always begin with + or -

blank Print sign for negative values only

Use alternate form for these types
c,s,d,i,u (no effect)
o Prepend 0 to nonzero value
x or X Prepend 0x or 0X
e, E, f Always use decimal point
g or G Don’t strip trailing zeros

[width] Effect on Output
-------- -----------------------------------
n At least n characters, blank-padded
0n At least n characters, zero-padded

[.prec] Effect on Output
-------- -----------------------------------
none Default precision
.n s At most n characters
.n e,E,f,g,G Digits to right of point
.0 e,E,f No digits right of point

and no point unless #

type Format of Output
----- ------------------------------------
d signed decimal integer
o unsigned octal integer
u unsigned decimal integer

Appendix A: Format Specifiers for C sprintf Function 85

x unsigned hexadecimal integer (a-f)
X unsigned hexadecimal integer (A-F)

f Floating point [-]dddd.ddd
e Floating point [-]d.ddd e [+/-]ddd
E Floating point [-]d.ddd E [+/-]ddd
g e or f, whichever uses less space
G E or f, whichever uses less space

c Single character
s Character string
% The % character, literally

License 86

License

icl is distributed under the following license. Additional licenses under which some
source code used in icl is copyrighted are provided with the icl source code distribution.
Copyright c© 2000-2001, Bradley A. Hanson
Copyright c© 1998 D. Richard Hipp
Portions of this software are copyrighted by the Regents of the University of California, Sun
Microsystems, Inc., Scriptics Corporation, and other parties.
Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
3. The names of the authors may not be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDERS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

References 87

References

Ban, J. Hanson, B. A., Wang, T., Yi, Q., & Harris, D. J. (2001). A comparative study of
online pretest item–calibration/scaling methods in CAT. Journal of Educational Mea-
surement, 38, 191–212.

Bock, R. D., & Zimowski, M. F. (1996). Multiple group IRT. In W. J. van der Linden
and R. K. Hambleton (Eds.), Handbook of modern item response theory. New York:
Springer-Verlag.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm (with discussion). Journal of the Royal Statistical Society
B, 39, 1–38

Hanson, B. A. (1998). IRT Parameter Estimation using the EM Algorithm. [Available at
http://www.b-a-h.com/papers/note9801.html]

Kolen, M. J., & Brennan, R. L. (1995). Test equating methods and practices. New York:
Springer

Lewis, C. (1985). Discussion. In D. J. Weiss (Ed.), Proceedings of the 1982 Item Response
Theory and Computerized Adaptive Testing Conference (pp. 203-209). Minneapolis:
University of Minnesota, Department of Psychology, Computerized Adaptive Testing
Laboratory.

Linacre, J. M. (1994). PROX with missing data. Rasch Measurement Transactions, 8(3),
378.

Lord, F. M. (1980). Applications of item response theory to practical testing problems.
Hillsdale, N.J.: Lawrence Erlbaum Associates.

McLachlan, G. J., & Krishnan, T. (1997). The EM algorithm and extensions. New York:
John Wiley & Sons.

Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm.
Applied Psychological Measurement, 16(2), 159–176.

Nelson, C. (2000). Tcl/Tk Programmer’s Reference. Berkeley: Osborne/McGraw–Hill.
Welch, B. B. (1999). Practical programming in Tcl and Tk (3rd Edition). Upper Saddle

River, NJ: Prentice Hall.
Woodruff, D. J., & Hanson, B. A. (1997). Estimation of item response models

using the EM algorithm for finite mixtures. Paper presented at the Annual
Meeting of the Psychometric Society (Gatlinburg, Tennessee, June). [Available at
http://www.b-a-h.com/papers/paper9701.html]

