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Abstract

In this article, the results of a simulation study comparing the performance of separate
and concurrent estimation of a unidimensional item response theory (IRT) model applied to
multidimensional noncompensatory data are reported. Data were simulated according to a
two-dimensional noncompensatory IRT model for both equivalent and nonequivalent groups
designs. The criteria usedwere the accuracy of estimating a distribution of observed scores, and
the accuracy of IRT observed score equating. In general, unidimensional concurrent estimation
resulted in lower or equivalent total error than separate estimation, although there were a few
cases where separate estimation resulted in slightly less error than concurrent estimation.
Estimates from the correctly speci¯ed multidimensional model generally resulted in less error
than estimates from the unidimensional model. The results of this study, along with results
from a previous study where data were simulated using a compensatory multidimensional
model, make clear that multidimensionality of the data a®ects the relative performance of
separate and concurrent estimation, although the degree to which the unidimensional model
produces biased results withmultidimensioanl data depends on the type ofmultidimensionality
present.

Index terms: item response theory, noncompensatory multidimensional IRT, multidimen-
sional equating, nonequivalent groups design, EPDIRM, BILOG-MG

The latent variable in unidimensional IRT (item response theory) models is
unidenti¯ed up to a linear transformation. In each calibration, restrictions on the
parameters are imposed to de¯ne the scale on which the parameters are measured.
In a common item nonequivalent group design two forms of a test with some items in
common are administered to samples from two populations. If item parameters for
the two forms are estimated independently, the parameter estimates for the di®er-
ent forms will not be on the same scale. These estimates are brought on a common
scale via minimization of some loss function. Techniques for this purpose have been
developed by Haebara (1980), Marco (1977), Loyd and Hoover (1980) and Stocking
and Lord (1983). An alternative procedure to obtain estimates on a common scale
is concurrent estimation of multiple forms. Using a so-called marginal maximum
likelihood (MML) procedure, the parameters of the IRT model are directly esti-
mated on a common scale (Bock & Zimowski, 1996; Glas & Verhelst, 1989). Kiefer
and Wolfowitz (1956) have shown that the MML estimator is strongly consistent
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under fairly reasonable regularity conditions. Therefore, in concurrent estimation
standard asymptotic theory for con¯dence intervals and the distribution of statistics
computed using MML estimates directly applies.

A number of studies have been carried out to compare the performance of con-
current and separate estimation (Hanson & B¶eguin, 1999; Kim & Cohen, 1998;
Petersen, Cook & Stocking, 1983; Wingersky, Cook & Eignor, 1987). These studies
used data that were simulated from the same unidimensional model also used for
parameter estimation. With real data, the simple unidimensional model may not
be appropriate and this could a®ect the performance of unidimensional separate
and concurrent estimation. One source of misspeci¯cation is multidimensionality of
the data. In this paper, the e®ect on performance of unidimensional separate and
concurrent estimation will be studied for data that in fact follow a multidimensional
noncompensatory IRT model (Ackerman, 1987; Embretson, 1980, 1984; Maris, 1993,
1995; Sympson, 1978; Spray, Davey, Reckase, Ackerman & Carlson, 1990).

Two classes of multidimensional IRT models for dichotomously scored items can
be distinguished, compensatory and noncompensatory models. In compensatory
multidimensional models (Lord & Novick, 1968; McDonald, 1967; Reckase, 1985
and Ackerman, 1996a and 1996b) the probability of a correct response is based on
the sum of the pro¯ciencies on the di®erent dimensions. Consequently, a higher
pro¯ciency on one of the dimensions compensates for a lower pro¯ciency on one of
the other dimensions. In noncompensatory models (Ackerman, 1987; Embretson,
1980, 1984; Maris, 1993, 1995; Sympson, 1978; Spray, Davey, Reckase, Ackerman
& Carlson, 1990) the probability of a correct response is based on a product of the
pro¯ciencies on the di®erent dimensions. Consequently, a low pro¯ciency on one of
the dimensions can not be compensated with a high pro¯ciency on one of the other
dimensions.

Most of the research in multidimensional IRT has focused on the compensatory
models. These models were ¯rst presented by Lord and Novick (1968) and Mc-
Donald (1967). These authors use a normal ogive to describe the probability of a
correct response. McDonald (1967,1997) developed an estimation procedure based
on an expression for the association between pairs of items derived from a polyno-
mial expansion of the normal ogive. This procedure is implemented in NOHARM
(Normal-Ogive Harmonic Analysis Robust Method, Fraser, 1988). An alternative
using all information in the data, and therefore labeled "Full Information Factor
Analysis", was developed by Bock, Gibbons, and Muraki, (1988). This approach
is a generalization of the marginal maximum likelihood (MML) and Bayes modal
estimation procedures for unidimensional IRT models (see, Bock & Aitkin, 1981,
Mislevy, 1986), and has been implemented in TESTFACT (Wilson, Wood, and
Gibbons, 1991). A comparable model using a logistic rather than a normal-ogive
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representation has been studied by Andersen (1985), Glas (1992), Reckase (1985,
1997) and Ackerman (1996a and 1996b).

Noncompensatory IRT models for dichotomous items were introduced by Symp-
son (1978). He proposed a multidimensional multiplicative generalization of the
three-parameter logistic (3-PL) model (Birnbaum, 1968; Lord,1980). A multicom-
ponent Rasch model was introduced by Embretson (1980, 1984). An estimation
procedure for this model based on the EM algorithm (Dempster, Laird & Rubin,
1977) was developed by Maris (1993, 1995).

Considerable attention has been given to the e®ect of noncompensatory multi-
dimensionality on parameter estimates of unidimensional IRT models. Ansley and
Forsyth (1985) examined unidimensional estimates obtained from two-dimensional
data generated using a noncompensatory model. They found that the unidimen-
sional estimates of discrimination and pro¯ciency parameters were highly related
to the average over dimensions of their multidimensional counterparts. Acker-
man (1987) compared the performance of unidimensional IRT estimates under two-
dimensional compensatory- and non-compensatory models. He found similar pat-
terns in the unidimensional estimates for both multidimensional models. Finally,
Spray, Davey, Reckase, Ackerman and Carlson (1990) compared data generated un-
der compensatory and noncompensatory models. They concluded that the models
were indistinguishable from a practical standpoint.

A number of multidimensional equating procedures have been proposed. Hirsch
(1989) proposed a procedure that calibrates the separate estimates of separate multi-
dimensional two-parameter logistic models for the two forms in a common-examinee
design on a common scale. Davey, Oshima and Lee (1996) proposed a procedure to
calibrate the estimates of two multidimensional three-parameter models for the two
forms in a common-item- or common-examinee-design on the same scale. Li and
Lissitz (1998) used simulation studies to compare a number of di®erent procedures
to calibrate the parameters of multidimensional IRT models on the same scale. Bolt
(1999) used simulation studies to investigate whether unidimensional IRT true-score
equating is more adversely a®ected by the presence of multidimensionality than con-
ventional linear- and equipercentile equating. He found that for correlations between
dimensions equal to 0.7 or larger, IRT true-score equating performed slightly better
than the conventional procedures. At lower correlations, IRT-equating performed
almost as good as equipercentile equating. Finally, B¶eguin, Hanson and Glas (2000)
compared the e®ect of multidimensionality on unidimensional IRT equating based
on separate and concurrent estimation. They found that in some nonequivalent
group conditions the error for both unidimensional equating methods was very large
compared to the e®ect of multidimensional equating.

In this paper, the performance of separate and concurrent estimation of a uni-

3



dimensional three-parameter logistic (3-PL) model (Birnbaum, 1968; Lord, 1980)
applied to multidimensional data is compared. To obtain a benchmark to evaluate
these unidimensional estimates, a two-dimensional noncompensatory normal-ogive
model with guessing (labeled NCMP-PNO) is estimated. In this model, the prob-
ability of a correct response of a person i on an item j; denoted Yij = 1; is written
as

P (Yij = 1; µi; ®j; ¯j; °j) = °j + (1¡ °j)
2Q
q=1

©(®jqµiq ¡ ¯jq) (1)

where © denotes the standard normal cumulative distribution function, °j is the
guessing parameter, ¯jq is the di±culty parameter on the qth dimension, µiq is the
pro¯ciency of person i on dimension q, and ®jq is the discrimination parameter of
item j:

The NCMP-PNO model will be estimated by an adapted version of a Markov
Chain Monte Carlo (MCMC) estimation procedures (B¶eguin, 2000, B¶eguin & Glas,
in press) for a multidimensional compensatory IRT model. This procedure is a
generalization to incomplete designs of procedures that use Gibbs sampling (Gelfand
& Smith, 1990) with data-augmentation to estimate models in the normal ogive
context.

Using these procedures the posterior number correct score distribution is easily
obtained by sampling response patterns during each iteration of the Gibbs sam-
pler. These response patterns are simulated based on the probability of a correct
response given the values of the parameters in the current iteration of the Gibbs
sampler. A nice property of this procedure is that the uncertainty of the parameter
estimates is taken into account in the estimation of the number-correct observed
score distribution.

Data

To simulate data with realistic properties item parameter estimates of the NCMP-
PNO model obtained on data from examinations at the end of secondary education
in the Netherlands will be used to simulate data. The original data used in this
study consist of examinations in language comprehension.

Two forms of three di®erent examinations were used: 1) two forms of the ex-
amination 'language comprehension in English at MAVO level ' for the years 1993
and 1999, 2) two forms of the examination 'language comprehension in German at
MAVO level' for the years 1995 and 1999, and 3) two forms of the examination
'language comprehension in French at MAVO level ' for the years 1995 and 1999.
These forms and examinations were selected from a larger pool of forms and exam-
inations in such a way that these examinations represent realistic conditions with a
di®erent amount of correlation between the latent pro¯ciencies of the NCMP-PNO
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model. Each form of each examination contained 50 dichotomously scored items.
The original two forms of each examination had no items in common, but additional
data from persons who responded to items from both forms were available. The data
collection design is beyond the scope of this article, for a detailed description of refer
to Glas and B¶eguin (1996) or B¶eguin (2000). As mentioned above, the NCMP-PNO
model item parameter estimates for the items on each examination are obtained us-
ing a two-dimensional MCMC estimation procedure. In this estimation procedure,
the item parameters are estimated under the assumption of di®erent pro¯ciency
distributions for the two groups in the design. So this procedure can be labeled a
multiple-group concurrent estimation procedure. The correlation between the two
latent pro¯ciencies for the English, German, and French examinations were 0.0, 0.3
and 0.5, respectively.

To simulate data according to a common-item nonequivalent group design for each
examination 10 items were randomly selected from each of the two forms. These 20
items were used as common items in two test forms, say A and B, constructed from
items on the original two forms. Form A was created using the 20 selected common
items and the 40 remaining items from one of the original forms. Form B contained
the 20 common items and the 40 remaining items from the other original form. So,
Form A contained all 50 items from the oldest form, the original 1993 or 1995 form,
and 10 items from the original 1999 form. Form B contained 10 items from the
original 1993 or 1995 form and all 50 items from the original 1999 form. To give
an illustration of the item parameters used for generating the data, the parameter
values for the examinations in French language comprehension are given in Figure
1. The values of the discrimination parameters on the second dimension, ®2; the
di±culty parameters ¯1 and ¯2; and the guessing parameter ° are plotted against
the value of the discrimination parameter on the ¯rst dimension, ®1:

Method

Samples of item responses for forms A and B for each of the examinations are gen-
erated under two di®erent conditions. These conditions di®er in the mean vectors of
the bivariate normal pro¯ciency distributions for the two populations taking Forms
A and B. The mean pro¯ciency on the ¯rst dimension for the population taking
Form A is 0:0 in all conditions while the mean pro¯ciency on the ¯rst dimension
for the population taking Form B is either 0:0 or 0:5. The mean pro¯ciency for the
second dimension is 0:0 in all conditions. Combining the two levels of mean pro¯-
ciency di®erence with the three examinations produced six study conditions. Table
1 contains a summary of the conditions. Conditions 1 and 4 use the English forms
with correlation between the dimensions of 0.0, conditions 2 and 5 use the German
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Figure 1. Parameter values
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Table 1. Overview of the conditions
Condition Mean Pro¯ciency Covariance

Form A Form B Both Forms

1 (0,0) (0,0)
Ã

1
0.0 1

!

2 (0,0) (0,0)
Ã

1
0.3 1

!

3 (0,0) (0,0)
Ã

1
0.5 1

!

4 (0,0) (0.5,0)
Ã

1
0.0 1

!

5 (0,0) (0.5,0)
Ã

1
0.3 1

!

6 (0,0) (0.5,0)
Ã

1
0.5 1

!

forms with correlation between the dimensions of 0.3, and conditions 3 and 6 use
the French forms with correlation between the dimension of 0.5. The ¯rst three
conditions can be considered equivalent groups conditions, since the pro¯ciency dis-
tributions of the populations administered Form A and B are the same. The last
three conditions are nonequivalent group conditions. The conditions will be identi-
¯ed using the examination and an indication of whether the groups are equivalent
or nonequivalent. For example, condition 5 in Table 1 will be referred to as the
nonequivalent condition for the German examination.

Estimation of the parameters

For each condition, 20 samples of both forms were generated with 2000 persons per
form. Two unidimensional estimation programs were used, BILOG-MG (Zimowski,
Muraki, Mislevy & Bock, 1996) and EPDIRM (Hanson, 2000). In each sample
and each condition, three sets of parameter estimates were obtained using BILOG-
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MG and EPDIRM, two sets for each separate form (separate estimation) and one
for both forms simultaneously (concurrent estimation). Also for each sample the
NCMP-PNO model was estimated.

For both BILOG-MG and EPDIRM, normal population distributions of the la-
tent variable were assumed. In the nonequivalent groups conditions the mean and
standard deviation of the normal distribution for the group taking Form B was es-
timated. Default priors were used for the a and b parameter in BILOG-MG. The
prior used for the a parameters is a lognormal distribution with a mean of 0 and a
standard deviation of 0.5. The prior used for the c parameters is a beta distribu-
tion with parameters 6 and 16. To support convergence an additional N(0; 2) prior
distribution was used on the b parameter. In the nonequivalent groups conditions
the priors are updated at each iteration, so priors used in the ¯nal iteration will
be somewhat di®erent from the initial priors. Appendix A gives the BILOG-MG
control ¯les used to obtain parameter estimates for each simulated sample.

Default four{parameter beta priors were used for the a, b, and c parameters in
EPDIRM. The priors used for the a, b, and c parameters were Beta(1.75, 3, 0, 3),
Beta(1.01, 1.01, -6, 6), and Beta(3.5, 4.0, 0, 0.5), respectively, where Beta(p, q, l, u)
represents a four{parameter beta prior with shape parameters p and q, lower limit l,
and upper limit u. The item parameter priors used in EPDIRM are less informative
than the item parameter priors used in BILOG-MG. Appendix B gives the EPDIRM
control ¯les used to obtain parameter estimates for the simulated samples.

The MCMC procedure consisted of 3000 iterations with a burn-in period of 1000
iterations. Results of Albert (1992) show that this is su±cient. As starting values for
the NCMP-PNO model, the true parameters were used for the item parameters, and
µ = 0 was used for the pro¯ciency of each simulee. The priors on the item parameters
were ® » N(1:; 0:5); ¯ » N(¡1; 1) and ° » Beta(20 ¤ °true; 20 ¤ (1¡ °true)):

In the separate estimation conditions, the parameters of Form A and Form B
had to be calibrated on a common scale. This was done with the Stocking and
Lord (1983) method (see also Kolen & Brennan, 1995) which was among the best
performing methods in the comparison by Hanson & B¶eguin (1999). The three
conditions where the groups of simulees that were administered Form A and B had
equal pro¯ciency distributions (conditions 1 through 3 in Table 1) can be considered
equivalent groups conditions. In an equivalent groups design, it is not necessary to
assume di®erent population distributions for the groups taking Form A and Form B.
Consequently, in the condition were the parameters are estimated separately for the
two forms, no linking is necessary to bring the two sets of estimates on a common
scale. Analogously, one can assume a single population distribution for both samples
when concurrent estimation is applied. In this study, a single population distribution
was assumed for the estimation of the unidimensional models in the conditions where
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the populations administered Form A and B had equal pro¯ciency distributions.
Consequently, in separate estimation, no scaling was performed and in concurrent
estimation using BILOG-MG and EPDIRM, a single group was speci¯ed. In the
NCMP-PNO model, di®erent population distributions were estimated due to the
current limitations of the available software. Because Hanson and B¶eguin (1999)
found indications that separate estimation with scaling improved performance in
equivalent group conditions, separate estimation with scaling was also performed in
conditions where the populations administered Form A and B had equal pro¯ciency
distributions.

In the separate estimation conditions, two sets of item parameter estimates for
the common items are available. In this study, the Form A item parameter esti-
mates were used as the parameter estimates of the common items for the purpose of
computing the criteria used to evaluate the quality of item parameter scaling. An
alternative would be using the average of the item parameter estimates obtained on
the two forms (Kim & Cohen, 1998).

Evaluation of scaling

To evaluate the quality of item parameter scaling, di®erences in results of equating
scores on Form B to scores on Form A were assessed. Two criteria based on IRT
observed-score (OS) equating of number-correct (NC) scores (Zeng & Kolen, 1995)
were used. This technique uses the estimated number correct score distributions of
both forms in one population. Here, the score distributions of Forms A and B were
estimated for the population taking Form A.

Estimating score distributions

Using the estimated item and population parameters, the compound binomial distri-
bution was used to generate the score distribution of a simulee with multidimensional
pro¯ciency µ. The score distribution for the simulees administered Form A, say a
sample from a population A with a multivariate normal ability distribution hav-
ing mean ¹A and covariance matrix §A, can be computed by integrating over the
population distribution of µ; that is,

f(r) =
Z

¢ ¢ ¢
Z X

fxjrg
f(x jµ )g(µ j ¹A;§A)dµ; (2)

where fx jrg stands for the set of all possible response patterns resulting in a score
r, and f(x jµ ) is the probability of item response pattern x given latent pro¯ciency
vector µ. In the case of normal distributed populations, the integral can be computed
using Gauss-Hermite quadrature (Abramowitz & Stegun, 1972). At each of the
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quadrature points, a recursion formula by Lord and Wingersky (1984) can be used
to obtain

P
fxjrg f(x jµ ); the probability of obtaining number correct score r given

pro¯ciency µ. To obtain accurate results, 180 quadrature points were used in the
unidimensional case and 100 quadrature points were used for each dimension in the
multidimensional case.

In the conditions where an MCMC estimation procedure was used, the score dis-
tribution was estimated as follows. After the burn-in period for the Gibbs-sampler,
after every 20 iterations, the procedure by Lord and Wingersky was applied with
the currently drawn values of the person and item parameters. The estimated score
distribution was the mean over 100 thus obtained score distributions. A nice prop-
erty of this procedure is that the uncertainty of the parameter estimates is taken
into account in the estimation of the score distribution.

In the conditions where a unidimensional model was used, the observed score
distributions needed for the criteria described in the next section were calculated
with Guass{Hermite quadrature using a univariate standard normal distribution.

Criteria

To evaluate the equating precision in the 6 conditions the following two criteria
were used. The ¯rst criterion was based on the di®erences between the estimated
and true observed score distributions on Form B for the population administered
Form A, where the true distribution is the distribution under the model used to
generate the data. The second criterion was based on comparing equivalent score
points from the observed score equating function with the true equivalent score
points based on the model used to generate the data for the population that took
Form A. The evaluation of the score distributions served two purposes. On one
hand, comparison of score distributions provided an evaluation of model ¯t. On the
other hand, it provided insight into the quality of the equating process, since the
score distributions play a crucial role in IRT number-correct equating.

Let ftrue;r be the expected frequency of score point r on Form B for a sample
of examinees from the population administered Form A as computed using the
parameters of NCMP-PNO model from which the data were generated. Let fhr
be the frequency of score point r on Form B for the population that took Form A
as estimated using item parameter estimates from replication h: To compare the
score distributions, the mean over score points of the mean squared error (MSE)
was calculated by summing over the 20 samples and the k +1 score points, that is,

MSE =
1

20(k + 1)

20X

h=1

kX

r=0
(fhr ¡ ftrue;r)2: (3)

The MSE can be decomposed into a term representing the mean over score points
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of the squared bias (mean bias) and a term representing the mean over score points
of the variance (mean variance):

MSE =
1
k +1

kX

r=0
(fr ¡ ftrue;r)2 +

1
20(k + 1)

20X

h=1

kX

r=0
(fhr ¡ fr)2; (4)

where fr is the mean over replications, that is,

fr =
1
20

20X

h=1
fhr: (5)

A measure of model ¯t can be obtained if the terms of (3) are divided by the true
frequency. This results in the test-statistic

X2 =
1

20(k + 1)

20X

h=1

kX

r=0

(fhr¡ ftrue;r)2
ftrue;r

: (6)

Although, the distribution of this statistic in the present application is unknown
(Glas & Verhelst, 1989), the values provide an {admittedly fallible{ basis for com-
parison.

For the second criterion, equivalent score points of Form B equated to Form
A estimated using various models were compared with the equivalent score points
obtained with the true model. Let strue;r be the integer score point on Form A
that is equivalent with the score point r on Form B, based on the rounded IRT
observed score equating function computed using the true item parameters and
the true latent pro¯ciency distribution for the group taking Form A. Let shr be
an analogous score point estimated in replication h: Furthermore, let pr;true be the
probability in the population taking Form A of obtaining a score r on Form B based
on the true parameters values. To compare the equivalent score points, a weighted
mean squared error (WMSE) was calculated by summing over samples and score
points. The score points were weighted by ph;true, which resulted in

WMSE =
1
20

kX

r=0
pr;true

20X

h=1
(shr¡ strue;r)2: (7)

The WMSE can be decomposed into terms representing the weighted sum of the
squared bias (weighted bias) of equated score points and weighted sum of the vari-
ance (weighted variance) of the equated score points, so,

WMSE =
kX

r=0
pr;true(sr ¡ strue;r)2 +

1
20

kX

r=0
pr;true

20X

h=1
(shr ¡ sr)2; (8)

where sr is the mean equivalent score of score point r over replications, that is,

sr =
1
20

20X

h=1
shr: (9)
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The weighted mean absolute error (WMAE) is obtained if the squared error in
(7) is replaced by the absolute value of the error, so

WMAE =
1
20

kX

r=0
pr;true

20X

h=1
jshr ¡ strue;rj : (10)

Results

Three factors are investigated in this study 1) concurrent versus separate estimation
2) EPDIRM versus BILOG-MG concurrent estimation 3) unidimensional versus
multidimensional noncompensatory estimation. All BILOG-MG, EPDIRM, and
MCMC runs converged except for 4 Form B data sets in the German examination
nonequivalent groups condition (separate estimation) for which BILOG-MG did not
converge. Convergence was achieved for these four data sets by re{running BILOG-
MG with the number of Newton steps set to zero.

First, the true and estimated frequency distributions of Form B were compared.
To illustrate the results, the estimated frequency distributions for the French ex-
amination for nonequivalent groups using the NCMP-PNO model, BILOG-MG and
EPDIRM are plotted in Figure 2. The frequency distribution obtained using the true
model used to generate the data is plotted together with the estimated frequency
distributions of the 20 samples. In Figure 2 it can be seen that the unidimensional
estimation procedures show a larger variation between the score distributions of
the di®erent samples than the score distributions obtained using the NCMP-PNO
model. The scores in the samples obtained using the unidimensional estimation
procedures are in general somewhat lower than the scores obtained using the true
values. This e®ect is stronger in the separate estimation conditions (Figure 2b and
2d), especially when based on the BILOG-MG estimates. In some of the samples
the score distributions based on the EPDIRM estimates (Figure 2c and 2d) show a
larger deviation from the true score distribution. Finally, in Figure 2e it can be seen
that the scores in the samples estimated using the NCMP-PNO model are somewhat
higher than the true score distribution.

Table 2 gives the mean squared error, squared bias and variance for the estimated
Form B distributions, along with the value of the X2{statistic, for the various condi-
tions and estimation methods. The ¯rst three columns of Table 2 identify the com-
bination of model and program, condition, and equating method for which results
are presented. The ¯rst column gives the model and program used for estimation.
The second column identi¯es the study condition by giving the examination followed
by a 0 or 5, where 0 means equivalent groups (¯rst dimension mean of 0.0 for the
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(a) Concurrent estimation BILOG-MG (b) Separate estimation BILOG-MG
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Figure 2. Score distributions for Form B for the French Examination with
nonequivalent groups condition, determined using the true pro¯ciency
distribution of the population administered Form A.
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population taking Form B), and 5 for nonequivalent groups (¯rst dimension mean of
0.5 or the group population Form B). The third column gives the equating method
| \sepNS" for separate estimation with no item parameter scaling (only for the
equivalent groups conditions), \sep" for separate estimation with item parameter
scaling using the Stocking-Lord method, and \con" for concurrent estimation. The
mean squared error, bias, and variance presented in Table 2 are plotted in Figure 3.
The top two plots in Figure 3 present the MSE results from Table 2 for the equiv-
alent and nonequivalent groups cases, respectively. The middle two plots present
squared bias, and the bottom two plots present variance.

The performance of the unidimensional and multidimensional models di®er in the
equivalent and nonequivalent groups conditions. In the equivalent groups conditions
the NCMP-PNO model resulted in a MSE and squared bias that were in general
smaller than the MSE and squared bias obtained using unidimensional models for
the English and German examinations. The unidimensional model using concurrent
estimation and separate estimation with no scaling resulted in a somewhat lower
MSE and squared bias for the French examination. The variance obtained with
unidimensional concurrent estimation or with separate estimation with no scaling
was smaller than the variance obtained with the NCMP-PNO model. Compar-
ing separate and concurrent estimation in the equivalent groups conditions both
BILOG-MG and EPDIRM resulted in a MSE, squared bias and variance that were
in general smaller for the concurrent estimation method than for the separate esti-
mation method. The only exception occurred for the French examination where the
separate estimation method with no scaling using EPDIRM resulted in the same
MSE as the concurrent estimation method. The separate estimation method with
no scaling had a slightly lower variance but this e®ect was o®set by a slightly higher
squared bias than in the concurrent estimation method. Separate estimation with no
scaling resulted in a lower MSE, squared bias and variance than separate estimation
with scaling.

Comparing separate and concurrent estimation in the nonequivalent groups con-
ditions both BILOG-MG and EPDIRM resulted in a MSE, squared bias and variance
that were in general smaller for the concurrent estimation method than for the sep-
arate estimation method. The exceptions occurred for the English and German
examinations when the EPDIRM program was used. For the English examination
the separate estimation resulted in a lower MSE and squared bias. For the German
examination only the squared bias was lower. The NCMP-PNO model performed
better than the other estimation procedures for the English and German exami-
nations. For the French examination both EPDIRM and BILOG-MG concurrent
estimation procedures performed better than NCMP-PNO.

With respect to the relative performance of BILOG-MG and EPDIRM, in con-
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Table 2. Mean squared error of estimated Form B distribution
Model/Program Condition Equating MSE Bias Variance X2

EPDIRM English{0 sepNS 5.8 5.2 0.6 349.
EPDIRM English{0 sep 7.1 5.4 1.8 392.
EPDIRM English{0 con 5.6 5.1 0.5 339.
BILOG-MG English{0 sepNS 10.6 10.0 0.6 589.
BILOG-MG English{0 sep 11.7 10.0 1.7 627.
BILOG-MG English{0 con 9.8 9.2 0.5 547.
NCMP-PNO English{0 con 1.5 0.6 1.0 68.
EPDIRM German{0 sepNS 4.0 3.2 0.8 323.
EPDIRM German{0 sep 6.0 3.3 2.7 387.
EPDIRM German{0 con 3.5 2.8 0.7 279.
BILOG-MG German{0 sepNS 8.0 7.2 0.8 601.
BILOG-MG German{0 sep 10.0 7.2 2.8 671.
BILOG-MG German{0 con 6.8 6.1 0.7 497.
NCMP-PNO German{0 con 1.9 0.5 1.4 78.
EPDIRM French{0 sepNS 1.4 0.4 1.0 88.
EPDIRM French{0 sep 6.5 2.8 3.7 367.
EPDIRM French{0 con 1.4 0.3 1.1 79.
BILOG-MG French{0 sepNS 3.0 1.9 1.0 151.
BILOG-MG French{0 sep 7.6 4.3 3.4 424.
BILOG-MG French{0 con 2.6 1.6 1.0 128.
NCMP-PNO French{0 con 5.0 3.3 1.6 207.
EPDIRM English{5 sep 6.0 4.4 1.5 499.
EPDIRM English{5 con 7.0 5.6 1.4 616.
BILOG-MG English{5 sep 9.5 7.9 1.5 754.
BILOG-MG English{5 con 4.6 3.1 1.5 380.
NCMP-PNO English{5 con 1.6 0.3 1.3 76.
EPDIRM German{5 sep 6.5 3.9 2.6 312.
EPDIRM German{5 con 6.4 4.1 2.3 379.
BILOG-MG German{5 sep 10.9 8.4 2.5 588.
BILOG-MG German{5 con 4.6 2.3 2.3 217.
NCMP-PNO German{5 con 3.6 1.7 1.9 135.
EPDIRM French{5 sep 9.2 6.2 3.0 345.
EPDIRM French{5 con 5.9 3.1 2.8 245.
BILOG-MG French{5 sep 13.1 10.0 3.2 409.
BILOG-MG French{5 con 4.5 2.0 2.5 143.
NCMP-PNO French{5 con 6.9 5.2 1.8 247.
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Figure 3. Average Error of Estimated Form B Distributions.
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current estimation BILOG-MG performed better than EPDIRM, while in separate
estimation EPDIRM performed better.

Comparing the X2 for the di®erent conditions and estimation methods, within
conditions the pattern of results was similar to those for MSE. In general the unidi-
mensional concurrent estimation procedures results in lower X2 than the separate
procedures. Exceptions are found with the EPDIRM program in the nonequiva-
lent groups condition for the English and German examinations. The NCMP-PNO
model performs best in all conditions for the English and German examinations, but
worse than the unidimensional model using concurrent estimation for the French ex-
amination. Note that it is unclear how these results should be interpreted, since the
distribution of the X 2 statistic is unknown and can di®er over conditions. The X2

is calculated by summation over 1,220 cells. However the degrees of freedom of each
X2 value is unknown.

Table 3 gives the weighted mean squared error, weighted squared bias, and
weighted variance for the estimated equating functions of Form B scores to equiva-
lent Form A scores, along with the WMAE, for the various conditions and estimation
methods. The weighted mean squared error, weighted squared bias, and weighted
variance presented in Table 3 are plotted in Figure 4.

The di®erences in the weighted variance that resulted from di®erent estimation
procedures and examinations were relatively small in the equivalent groups condi-
tions. In the nonequivalent conditions the weighted variance di®ered some among
examinations with French having the highest weighted variance, and English the
lowest weighted variance. Larger di®erences in the results among the conditions
and the estimation procedures occurred in the weighted squared bias, and conse-
quently also in the WMSE. For the equivalent groups conditions, the NCMP-PNO
model had the lowest WMSE across conditions for each examination. All the uni-
variate procedures resulted in similar levels of weighted squared bias and WMSE for
the English and German examinations. In these conditions the di®erences between
EPDIRM and BILOG-MG procedures were small. For the French examination con-
current estimation resulted in the lowest squared bias and WMSE, and separate
estimation with scaling resulted in the highest squared bias and WMSE for the
unidimensional model.

In the nonequivalent groups results reported in Table 3, the NCMP-PNO model
had the lowest WMSE except for the English examination were the unidimensional
concurrent estimation procedures performed better. The unidimensional concurrent
estimation procedures performed better than the separate estimation procedures.
The EPDIRM concurrent estimation procedure performed slightly better than its
BILOG-MG counterpart for the English examination, while EPDIRM performed
somewhat worse than BILOG-MG for the French examination. Finally, the WMSE's
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Table 3. Weighted error of equated scores
Model/Program Condition Equating WMSE Bias Variance WMAE
EPDIRM English{0 sepNS 0.52 0.36 0.16 0.52
EPDIRM English{0 sep 0.55 0.40 0.15 0.55
EPDIRM English{0 con 0.56 0.43 0.13 0.56
BILOG-MG English{0 sepNS 0.53 0.37 0.16 0.52
BILOG-MG English{0 sep 0.54 0.39 0.15 0.54
BILOG-MG English{0 con 0.54 0.41 0.13 0.54
NCMP-PNO English{0 con 0.22 0.07 0.14 0.22
EPDIRM German{0 sepNS 0.36 0.25 0.11 0.36
EPDIRM German{0 sep 0.40 0.27 0.13 0.40
EPDIRM German{0 con 0.37 0.26 0.11 0.37
BILOG-MG German{0 sepNS 0.37 0.26 0.11 0.37
BILOG-MG German{0 sep 0.40 0.27 0.13 0.40
BILOG-MG German{0 con 0.37 0.25 0.12 0.37
NCMP-PNO German{0 con 0.23 0.09 0.14 0.23
EPDIRM French{0 sepNS 0.43 0.32 0.11 0.43
EPDIRM French{0 sep 0.54 0.37 0.17 0.52
EPDIRM French{0 con 0.40 0.30 0.10 0.40
BILOG-MG French{0 sepNS 0.42 0.32 0.10 0.41
BILOG-MG French{0 sep 0.50 0.34 0.16 0.49
BILOG-MG French{0 con 0.35 0.30 0.05 0.35
NCMP-PNO French{0 con 0.23 0.09 0.14 0.23
EPDIRM English{5 sep 0.21 0.10 0.11 0.21
EPDIRM English{5 con 0.16 0.06 0.10 0.16
BILOG-MG English{5 sep 0.20 0.10 0.11 0.20
BILOG-MG English{5 con 0.19 0.09 0.10 0.19
NCMP-PNO English{5 con 0.21 0.07 0.14 0.21
EPDIRM German{5 sep 0.30 0.16 0.14 0.30
EPDIRM German{5 con 0.27 0.14 0.13 0.27
BILOG-MG German{5 sep 0.29 0.15 0.14 0.29
BILOG-MG German{5 con 0.27 0.14 0.13 0.27
NCMP-PNO German{5 con 0.25 0.12 0.12 0.25
EPDIRM French{5 sep 1.24 1.10 0.14 1.01
EPDIRM French{5 con 0.97 0.81 0.16 0.85
BILOG-MG French{5 sep 1.11 0.95 0.16 0.93
BILOG-MG French{5 con 0.73 0.57 0.16 0.67
NCMP-PNO French{5 con 0.33 0.16 0.17 0.33
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were much higher for the French examination than the other two examinations. The
WMSE's for the German examination were slightly higher than those for the English
examination.

Conclusions

In this study, the e®ect of the estimation method on equating results was compared
for the case where unidimensional models were applied to multidimensional non-
compensatory data. As with any simulation study, considerable caution in drawing
conclusions should be taken, due to the small number of conditions investigated. In
the present study, the results pertain only to the six di®erent conditions used. The
only aspects varied in the conditions were the use of three di®erent sets of forms,
with di®erent correlations between the two dimensions, and the di®erence between
the mean of the pro¯ciency distributions of the populations. There was no variation
in data collection designs or the number of respondents in the design.

For the unidimensional model concurrent estimation generally resulted in lower
or equivalent total error than separate estimation, although there were a few cases
where separate estimation resulted in slightly less error than concurrent estima-
tion. These results are consistent with the results in B¶eguin, Hanson and Glas
(2000) which simulated data from a compensatory multidimensional model, and
Hanson and B¶eguin (1999) where data were simulated from a unidimensional model.
Comparing the two estimation programs, there tended to be larger di®erences be-
tween the total error in concurrent and separate estimation for BILOG-MG than
for EPDIRM.

Separate estimation without scaling resulted in similar or better performance
than separate estimation with scaling. This result is in line with the results reported
in B¶eguin, Hanson and Glas (2000), but di®ers from the results of Hanson and
B¶eguin (1999). This suggests that computing a scaling transformation in the case of
equivalent groups is bene¯cial when a unidimensional model is correctly speci¯ed,
but can be detrimental when a unidimensional model is used with multidimensional
data.

In general, the EPDIRM and BILOG-MG programs produced similar results,
although there some cases where there were systematic di®erences between the two
programs. For the Form B distribution criterion the MSE was smaller for EPDIRM
than BILOG{MG in all equivalent groups conditions, although for the nonequivalent
groups conditions BILOG{MG had smaller MSE than EPDIRM when concurrent
estimation was used, but not when separate estimation was used. For the equat-
ing criterion EPDIRM and BILOG-MG had similar WMSE over all conditions for
the English and German examinations. For the French examination BILOG-MG
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resulted in lower WMSE across all conditions. The di®erences between the results
using BILOG-MG and EPDIRM may be at least partly due to the di®erent priors
that were used by the two programs. For both programs default priors were used,
except for separate estimation with BILOG-MG in the nonequivalent groups cases,
where a standard normal prior was put on the b parameters rather than the default
of no prior. The priors used in EPDIRM were generally less informative than the
priors used in BILOG-MG. For concurrent estimation in the nonequivalent groups
cases the priors were updated at each EM{step in BILOG-MG, but constant priors
were used in EPDIRM.

The multidimensional model resulted in lower total error than the unidimensional
model in most conditions. The principal exception is for the Form B distribution
criterion on the French examination where the total error and bias for the multidi-
mensional model was greater than for the unidimensional model using concurrent
estimation. The di®erence in the total error tended to be greater in the equivalent
groups conditions as opposed to the nonequivalent groups conditions. These results
di®er from those found in B¶eguin, Hanson and Glas (2000) where data were sim-
ulated using a compensatory multidimensional model. B¶eguin, Hanson and Glas
(2000) found that the di®erence in total error between the unidimensional and
multidimensional models was small for the equivalent groups conditions, but was
uniformly very large for the nonequivalent groups conditions.

The total error and bias for the multidimensional model increased from the En-
glish to the German to the French examinations, especially for the Form B distri-
bution criterion. This e®ect was also observed for some of the nonequivalent groups
conditions when using the univariate model. Since the correlation between the di-
mensions increased from the English to the German to the French examinations this
implies that the total error for the multidimensional model increased with increas-
ing correlation between the dimensions, although this is confounded by the fact that
the examinations di®ered as well as the correlation between dimensions. This e®ect
of increasing total error with increasing correlation was also observed in B¶eguin,
Hanson and Glas (2000) for the unidimensional model in the nonequivalent groups
conditions, whereas here this e®ect was observed for the multidimensional model in
both the equivalent and nonequivalent groups conditions, and only for some of the
results using the unidimensional model in the nonequivalent groups conditions.

The results in this study with regard to di®erences in performance of the mul-
tidimensional versus the unidimensional model di®ers from the results in B¶eguin,
Hanson and Glas (2000). The major di®erence in these two studies is the type of
multidimensional model used (compensatory versus noncompensatory). It appears
that the bias of the unidimensional results were less and the bias of the multidi-
mensional results were greater for the noncompensatory model as compared to the
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compensatory model, at least based on the Form B distribution criterion. This e®ect
can be seen by comparing the results in Figure 2 with the results in Figures 2 and 3
in B¶eguin, Hanson and Glas (2000). It is possible that some bias in the multivariate
results is caused by the priors used for the item parameters in the noncompensatory
model estimation. As was shown in Figure 2e, the estimated French frequency dis-
tributions for the nonequivalent groups condition were somewhat positively biased.
This could be due to the choice of the prior distribution of ¯ used in the estimation
procedure. In this case, when the estimated parameter values of ¯ tend to be larger
than ¡1; the prior decreases the ¯ values, which will lead to positively biased score
distributions.

The di®erences in results between this study and the studies by Hanson and
B¶eguin (1999) and B¶eguin, Hanson and Glas (2000) illustrate the sensitivity of the
results of simulation studies to the true simulation model. The results of this study
and B¶eguin, Hanson and Glas (2000) make clear that multidimensionality of the
data a®ects the relative performance of separate and concurrent unidimensional es-
timation methods, although the degree to which the unidimensional model produces
biased results with multidimensional data depends on the type of multidimension-
ality present in the data.
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Appendix A { Control Files for BILOG-MG

Separate Estimation

>GLOBAL DFNAME='NCME05A.1',NPARM=3,NTEST=1, SAVE;
>SAVE PAR='SEP05A01.PAR';
>LENGTH NITEMS=60;
>INPUT NTOT=60,SAMPLE=2000,NALT=4,NID=4;
>ITEMS INUM=(1(1)60);
>TEST TNAME=EN;
(4A1,T6,60A1)
>CALIB NQPT=40,CYCLE=40,TPRIOR,NEWTON=15;

Concurrent Estimation - Equivalent Groups

>GLOBAL DFNAME='NCME05C.1',NPARM=3,NTEST=1, SAVE;
>SAVE PAR='CON05A01.PAR';
>LENGTH NITEMS=100;
>INPUT NTOT=100,SAMPLE=4000,NALT=4,NID=2,NFORM=2;
>ITEMS INUM=(1(1)100);
>TEST TNAME=EN;
>FORM1 LEN=60, INUMBERS=(1(1)60);
>FORM2 LEN=60, INUMBERS=(41(1)100);
(2A1,1X,I1,1X,60A1)
>CALIB NQPT=40,CYCLE=40,TPRIOR,NEWTON=5;

Concurrent Estimation - Nonequivalent Groups

>GLOBAL DFNAME='NCME15C.1',NPARM=3,NTEST=1, SAVE;
>SAVE PAR='CON15N01.PAR';
>LENGTH NITEMS=100;
>INPUT NTOT=100,SAMPLE=4000,NALT=4,NID=2,NGROUP=2,NFORM=2;
>ITEMS INUM=(1(1)100);
>TEST TNAME=EN;
>FORM1 LEN=60, INUMBERS=(1(1)60);
>FORM2 LEN=60, INUMBERS=(41(1)100);
>GROUP1 GNAME='A',LEN=60,INUMBERS=(1(1)60);
>GROUP2 GNAME='B',LEN=60,INUMBERS=(41(1)100);
(2A1,1X,I1,T4,I1,1X,60A1)
>CALIB NQPT=40,CYCLE=40,TPRIOR,NORMAL,REFERENCE=1,NEWTON=20;
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Appendix B { Control ¯les for EPDIRM

Separate Estimation

# 60 items
epdirm start 60

# read item responses
read examinees NCME05A.1 f @6 60i1g

# compute starting values
starting values

# compute EM iterations
EM steps

epdirm end

Concurrent Estimation - Equivalent Groups

# 100 items
epdirm start 100

# Items on form A
set items(a) [seq 1 60]

# Items on form B
set items(b) [seq 41 100]

# Responses are read from columns 6-65 for both forms
set respFmt(a) f @6 60i1g
set respFmt(b) f @6 60i1g

# Form is read from column 1 of record
set formFmt a1

# Read item responses for examinees who took form A
read examinees missing NCME00A.1 $formFmt items respFmt

# Read item responses for examinees who took form B
read examinees missing NCME00B.1 $formFmt items respFmt
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# compute starting values
starting values

# compute EM iterations
EM steps -max iter 300

epdirm end

Concurrent Estimation - Nonequivalent Groups

# 100 items, 2 groups, allow unique latent variable
# points for each group
epdirm start 100 -num groups 2 -unique points

# Items on form A
set items(a) [seq 1 60]

# Items on form B
set items(b) [seq 41 100]

# Responses are read from columns 6-65 for both forms
set respFmt(a) f @6 60i1g
set respFmt(b) f @6 60i1g

# Form is read from column 1 of record
set formFmt a1

# Read item responses for examinees who took form A (group 1)
read examinees missing NCME05A.1 $formFmt items respFmt 1

# Read item responses for examinees who took form B (group 2)
read examinees missing NCME05B.1 $formFmt items respFmt 2

# compute starting values
starting values

# compute EM iterations
EM steps -estim dist mean sd -max iter 300

epdirm end
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