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Abstract

The purpose of this study was to compare and evaluate five online pretest item

calibration/scaling methods in computerized adaptive testing (CAT): the marginal maximum

likelihood estimate with one EM cycle (OEM) method, the marginal maximum likelihood

estimate with multiple EM cycles (MEM) method, Stocking’s Method A, Stocking’s Method B,

and the BILOG/Prior method.  The five methods were evaluated in terms of item parameter

recovery under three different sample size conditions (300, 1,000, and 3,000).  The MEM

method appears to be the best choice among the methods used in this study because it produced

the smallest parameter estimation errors for all sample size conditions.   Stocking’s Method B

also worked very well, but it requires anchor items, which would make test lengths longer.  The

BILOG/Prior method did not seem to work with small sample sizes.  Until more appropriate

ways of handling the sparse data with BILOG are devised, the BILOG/Prior method may not be

a reasonable choice.  Because Stocking’s Method A has the largest weighted total error as well

as a theoretical weakness (i.e., treating estimated ability as true ability), there appears to be little

reason to use it.  The MEM method should be preferred to the OEM method unless amount of

time involved in iterative computation is a great concern.  Otherwise, the OEM method and the

MEM method are mathematically similar, and the OEM method produces larger errors than the

MEM method.



A Comparative Study of Online Pretest Item Calibration/Scaling Methods in CAT

Introduction

In computerized adaptive testing (CAT), pool replenishing is a necessary process for

maintaining an item pool because items in the pool would be obsolete or overexposed as time

goes on.  To be added as new items in the pool, the pretest items should be calibrated and be on

the same scale as items already in the pool.

Online calibration refers to estimating the parameters of pretest items which are presented

to examinees during the course of their testing with operational items (Stocking, 1988; Wainer &

Mislevy, 1990).  Since the item parameter estimates obtained from the paper and pencil delivery

mode are not necessarily comparable to the item parameter estimates calibrated from the CAT

mode, due to such factors as item ordering, different mode of test administration, context, local

item dependency, and cognitive difference (Parshall, 1998; Spray, Parshall, & Huang, 1997),

pretest item calibration/scaling methods that utilize the online testing system should be

developed.

The complication in online pretest item calibration results from the fact that, typically,

item response data obtained from CAT administrations are sparse, based on a restricted range of

ability (Folk & Golub-Smith, 1996; Haynie & Way, 1995; Hsu, Thompson, & Chen, 1998;

Stocking, 1988), and a relatively small number of items are administered compared to the paper

and pencil delivery mode.  These data characteristics may lead to inaccurate item parameter

estimates for the pretest items.  Nevertheless, the online pretest item calibration/scaling has

several advantages such as preserving testing mode and utilizing the pretest data obtained during

operational testing, and reducing the impact of motivation and representativeness concerns

coming from the administration of pretest items to volunteers (Parshall, 1998).
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Several studies have proposed online pretest item calibration methods (Folk & Golub-

Smith, 1996; Levine & Willams, 1998; Samejima, 2000; Stocking, 1988; Wainer & Mislevy,

1990).  Among them, some methods involve using parametric item response functions in which

pretest item characteristic curves are estimated as a three-parameter logistic model, whereas

other methods employ nonparametric methods of estimating item response functions.  In the

present study, pretest item calibration/scaling methods that use the parametric item response

model were compared.

Although it is valuable to identify the general properties of each method, it is difficult to

compare and evaluate results across studies because most studies have included only one or two

methods, and used different research designs and criteria.

It is necessary that these online pretest calibration/scaling methods be compared under

identical conditions to reveal their relative strengths and weaknesses in pretest item parameter

estimation.  The purpose of this study was to compare and evaluate parametric online pretest

item calibration/scaling methods in terms of item parameter recovery for different sample sizes.

In the next section, we discuss the characteristics of each online calibration method in greater

detail.

Online Pretest Item Calibration Methods

One-EM Cycle Method

Wainer and Mislevy (1990, pp. 90-91) described the marginal maximum likelihood

estimate with one EM cycle (OEM) approach for calibrating online pretest items.  In this paper,

the three-parameter (3-PL) logistic item response model is used to model item responses.  For the

3-PL model, the probability of a correct response to item i by an examinee with ability θj is
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where ai, bi, and ci are the item discrimination, difficulty parameter, and lower asymptote of

item i (i=1,…, n), respectively, and D is the constant 1.7.  The likelihood function of observing

an item response, uij, on an operational item for an examinee with ability θj (j=1,…, N) is

                                                ijij u
ji

u
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Similarly, the likelihood of observing the response, xkj (k=1,…, K), on a pretest item for an

examinee with ability θj is
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The joint likelihood of N different item responses on a pretest item is the product of the separate

likelihoods.  This joint likelihood is
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In the OEM approach,  the item parameters are estimated by maximizing the marginal

likelihood.  OEM takes just one E-step using the posterior distribution of ability, which is

estimated based on item responses only from the operational items, and just one M-step to

estimate item parameters, involving data from only the pretest items (Wainer & Mislevy, 1990).

The M-step finds parameter estimates that maximize
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where )(θg is a posterior distribution of θ given the responses to the operational items and item

parameters for the operational items, and βoperational is a vector of the known item parameters of

the operational items.  Maximization of Equation 5 with respect to item parameters produces

parameter estimates of the pretest items based on one M-step in the EM algorithm for marginal
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maximum likelihood estimates.  With this approach, the item parameter estimates of the pretest

items would only be updated once because only one M-step of the EM cycle is computed.

In implementing this method in practice, a Bayesian modal estimation approach may be

used by multiplying the marginal maximum likelihood equations by a prior distribution for the

pretest item parameters.

Some advantages of this approach are that since the operational items are used to

compute the posterior ability distribution, the pretest items are automatically on the same scale as

the operational items, and that no pretest item can contaminate other pretest items because the

pretest items are calibrated independently of other pretest items (Parshall, 1998).

Multiple-EM Cycles Method

As a variation of the OEM method, we increased the number of EM cycles until

convergence criterion was met.  This method is called here the marginal maximum likelihood

estimate with multiple EM cycles (MEM) method.  MEM is very similar mathematically to

OEM.  The first EM cycle with MEM is the same as OEM approach.  That is, MEM computes

the posterior distribution using the operational items and finds item parameters that maximizes

Equation 5 to obtain item parameter estimates.

However, beginning with the second E-step, MEM uses item responses on both the

operational items and pretest items to get the posterior distribution.  It should be noted that for

each M-step iteration, the item parameter estimates for the operational items are fixed, whereas

parameter estimates for the pretest items are updated until the item parameter estimates

converge.  With this method, the pretest items are also automatically on the same scale as items

in the pool.
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A prior distribution for pretest item parameters may be assumed when the MEM method

is implemented in practice, in which case the resulting parameter estimates are Bayes modal

estimates.

One important advantage of this method is that it fully uses information from item

responses on pretest items for calibration by taking multiple EM cycles.  Because this method

uses the item responses on the pretest items in the E-step, however, some poor pretest items may

affect the computation of the posterior distribution from the second E-step and the resulting

pretest item calibrations, particularly when the number of operational items is small (e.g. 10

items).

BILOG with Strong Prior Method

This method uses the computer program BILOG with strong priors on the operational

items.  By putting strong priors on the operational items, the BILOG with Strong Prior

(BILOG/Prior) method in essence fixes the operational item parameters while estimating pretest

item parameters.  As an example, Folk and Golub-Smith (1996) calibrated the operational items

concurrently with the pretest items and anchor items using BILOG.  They used an option in

BILOG to put strong priors on the operational, pretest, and anchor items.  The original item

parameter estimates were specified as means of strong priors for the operational CAT items and

the means of item parameter estimates in the CAT item pool were designated as priors for pretest

and anchor items.

We used different priors in this study from those used in Folk and Golub-Smith (1996).

We put strong priors on the item parameter estimates for operational items by setting the prior

means equal to the their calibrated parameter estimates with very small prior variances.  Default

priors were used for the item parameter estimates for pretest items.  More specific procedures are
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described in the methods section.  When using the BILOG/Prior method, however, the re-

estimated operational item parameter estimates would be different from the operational item

parameter estimates that were in the item pool, depending on the magnitude of the prior standard

deviations for each parameter.  Note that MEM does not re-estimate the operational item

parameter estimates, but instead uses the previously obtained item parameter estimates.

BILOG/Prior and MEM are the same in that both methods use the marginal maximum

likelihood method and multiple EM cycles, but are different in that while the BILOG/Prior

method calibrates the pretest items concurrently with the operational items, MEM calibrates only

the pretest items.

Stocking’s Method A

Stocking (1988) investigated two online calibration methods: Method A and Method B.  Method

A computes a maximum likelihood estimate of an examinee’s ability using the item responses

and parameter estimates for the operational items.  The log-likelihood function of observing the

responses, uij, on n operational items for N examinees with ability θj is
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Taking the derivative of Equation (6) with respect to the ability parameter yields
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There would be one such derivative for each of the N examinees.  For a given examinee, a

maximization procedure (e.g., Newton-Raphson) can be performed to produce the maximum

likelihood estimate of ability using the item responses on the operational items.

 Stocking’s Method A fixes the ability estimates (i.e., treats the ability estimates as the

true abilities) obtained from Equation 7.  The fixed abilities are then used to estimate item

parameters for the pretest items.  The log-likelihood function of observing the responses, xkj, on a

pretest item for N examinees given true abilities is
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Taking the derivative of Equation 8 with respect to the item parameters for an item (∆k = ak, bk,

or ck) yields three equations of the form
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For a given pretest item, a maximization procedure (e.g., Newton-Raphson ) can be applied to

produce the maximum likelihood estimate of item parameters using the item responses on the

pretest items.  Because the ability estimates are on the same scale as the operational item pool

and the ability estimates are fixed in the calibration of the new items, rescaling of the item

parameter estimates of the pretest items is not required.

The problem with Stocking’s Method A is that it treats ability estimates obtained from

the item responses on the operational items as true abilities in order to maintain the scales of

subsequent item pools.  Therefore, errors will be introduced in calibrating the pretest items
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because estimated abilities may be different from true abilities.  Nevertheless,  this method is a

natural and simple way to calibrate the pretest items.

Stocking’s Method B

Stocking’s Method B (Stocking, 1988) is an enhanced version of Stocking’s Method A.

The method uses a set of previously calibrated ‘anchor’ items for scale maintenance to correct

for scale drift that may result from the use of estimated abilities, rather than true abilities.  The

item parameter estimates of the anchor items are on the same scale as that of the operational

items.  Each examinee is administered some operational items, pretest items, and anchor items.

As in Stocking’s Method A, the ability estimate of each examinee is obtained using the

operational item responses.  The ability estimate is, then, fixed to calibrate the pretest items and

anchor items.  The two sets of item parameter estimates for the anchor items, the original item

parameters and the re-estimated parameters, are used to compute a scale transformation to

minimize the difference between the two test characteristic curves (Stocking & Lord, 1983).

This scale transformation is then used to place the parameter estimates for the pretest items on

the same scale as the item pool.

In using this method, it is important for the set of anchor items to be representative of the

adaptive test item pool in terms of difficulty.  Otherwise, inappropriate scale transformations

derived from the anchor items would be applied to all the pretest items.  The quality of the

anchor items should be good, because poor anchor items could distort the scale transformation

(Stocking, 1988, p. 20).  The increase in the actual test length due to the inclusion of anchor

items is a disadvantage of this method.
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Method

Data

This study used nine 60-item ACT Mathematics test forms (ACT, 1997).  Randomly

equivalent groups of about 2,600 examinees took each form.  The computer program BILOG

(Mislevy & Bock, 1990) was used to estimate the item parameters for all items assuming a 3-PL

logistic IRT model.  These estimated item parameters are treated as population ”true” item

parameters, and they were used for generating simulated data.  A total of 540 items were

allocated as follows: 520 CAT operational item pool, 10 pretest items, and 10 anchor items.  The

10 pretest items were randomly selected from the 540 items.  The 10 anchor items were selected

to be representative of the 520 operational items in terms of item difficulty.

CAT Simulation Procedure

Since true item parameters are never known in real world, this study used true item

parameters only for generating item responses and for evaluating the performance of each item

calibration method.  We used estimated item parameters (hereafter referenced to as “baseline”

parameter estimates) for item selection and ability estimation in CAT simulations.  The baseline

parameters for all 540 items were estimated from a full item-simulee response matrix generated

using the true parameters and 3,000 randomly selected simulees from a standard normal

distribution.  The computer program BILOG-MG was used to concurrently calibrate the full

response matrix.

Fixed-length adaptive tests (30 items) were administered to the randomly selected

simulees with sample sizes of 300, 1000, and 3000 from the standard normal ability distribution.

The 10 fixed-length “nonadaptive” pretest items were simulated using the same theta
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distribution.  The data on pretest items here consisted of a full matrix, while the matrix of item

responses on the operational CAT items was sparse.

The CATs were scored using Bock and Mislevy’s (1982) expected a posteriori (EAP)

ability estimation procedure.  The initial prior distribution for EAP ability estimates was assumed

to be normal with a mean of 0.0 and a standard deviation of 1.00. The simulated CAT began with

an item of medium difficulty and used maximum information selection procedures thereafter.

At the end of the 30 fixed-length tests, ability estimates were computed using maximum

likelihood estimation (MLE) procedures.  This simulation was replicated 100 times for each

method and sample size.

Pretest Item Calibration Procedures

The pretest items were calibrated and put on the same scale based on the methods

described in the previous section.  The computer simulations were done using programs written

in Visual Basic and C++.  An open-source C++ toolkit for IRT parameter estimation (Hanson,

2000) was used to implement the item parameter estimation for all methods except the

BILOG/Prior method.

For the BILOG/Prior method, BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1999)

was used for pretest item calibrations†.  Strong priors were based on the baseline parameter

estimates described in the previous section.  For each of the operational items in the pool, priors

of each parameter were specified as follows: mean of log normal prior for a was the log of the

baseline parameter estimate of a, standard deviation of log normal prior for a was 0.001; mean of

normal prior for b was the baseline parameter estimate of b, standard deviation of normal prior

for b was 0.005, alpha parameter for beta prior distribution for c was the value of  ((1000× the

                                                          
† Since BILOG (Mislevy & Bock, 1990) and BILOG-MG (Zimowski et al., 1999) work in the same way for one-
group, the results in this study would likely be the same if BILOG had been used instead of BILOG-MG.
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baseline parameter estimate of c)+1), and beta parameter for beta prior distribution for c was the

value of  ((1000×  (1- the baseline parameter estimate of c))+1).  This way of setting priors is

recommended by the BILOG-MG manual for setting an item parameter to a fixed value (see

Zimowski et al., 1999, pp. 89-90).  The BILOG-MG default priors (c ~ Beta(5,17) and a ~

lognormal (0, 0.5)) were used for the pretest items.

BILOG-MG needs some responses on the operational items for calibration, even though

strong priors were set on the operational CAT items.  Due to the nature of the CAT

administration, however, the operational items had a sparse item-simulee response matrix in

which some items were never administered to simulees.  In running BILOG-MG, we selected the

operational CAT items that had at least 50 responses for the 300 sample size condition.  Since

many BILOG-MG runs with the minimum of 50 responses produced errors and stopped, we

increased the minimum response (sample size) per item from 50 through 70 up to 100.  We

decided 100 responses per item to be a minimum for all different research conditions.  Setting a

high number for the minimum responses per item results in the small number of operational

items available to compute the posterior distribution.

Using both the OEM and MEM methods, the operational items were completely fixed to

be the same as the corresponding baseline parameter estimates.  The same default priors on the

pretest items as used for the BILOG/Prior method were set for comparison.

Stocking’s Method A used the adaptively administered operational items to estimate the

simulees' ability and treated them as true to calibrate pretest items.  The same priors as the

BILOG/Prior method were used for the pretest items.
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When implementing Stocking’s Method B,  the item parameters obtained by Stocking’s

Method A were further transformed through the anchor items using the Stocking-Lord method

(Stocking & Lord, 1983).

Criteria

In each condition (3 different sample sizes) studied, simulations are replicated 100 times.

This produced 100 item parameter estimates for each of 10 pretest items in each condition for

each method.  The estimates were on the same scale as items in the operational item pool.  The

performance of the pretest item calibration methods was evaluated by the extent to which the

true item characteristic curves of the pretest items were recovered.

Let ),,|( kkk cbaP θ  be the true item characteristic curve for the 3-PL logistic item

response model, where ak, bk, and ck are the true item parameters for pretest item k.  Let

)ˆ,ˆ,ˆ|( krkrkr cbaP θ  be the estimated item characteristic curve for item k on replication r, where

krkrkr cba ˆ,ˆ,ˆ  are estimated pretest item parameters.  An item characteristic curve criterion (Hanson

& Béguin, 1999) for pretest item k is

                                   θθθθ dwcbaPcbaP
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where w(θ) is a weight function based on a N(0, 1) distribution.  The integral is approximated

using evenly spaced discrete θ points on the finite interval (-6, 6) at increments of 0.1.  Each

finite θ point was weighted by its probability under a normal distribution.

Equation 10 is the weighted mean squared difference between the true item characteristic

curve and the estimated item characteristic curve, which is called the weighted mean squared

error (WMSE).  WMSE may be decomposed into the weighted squared bias (WSBias) and the

weighted variance (WVariance):
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and WSBias and WVariance are the first and second terms on the right side of Equation 11.

Also, average mean values and standard deviations of the WVariance, the WSBias, and the

WMSE across pretest items in each condition were computed.

Results

The empirical results of the performance of the pretest item calibration/scaling methods

appear in Tables 1 and 2 and Figures 1 through 3.  WMSE, WSBias, and WVariance are

presented in Table 1 for each pretest item, calibration method, and sample size.  In addition,

average values and standard deviations of the error indices over pretest items are presented in

Table 1.  Average WMSE along with the standard error of the average WMSE appear in Table 2.

Figures 1 through 3 plot the means of error indices for different methods and sample sizes.

Many BILOG-MG runs were not successful under the 300 and 1,000 sample size

conditions. Because of the sparseness of the data for the operational items, BILOG-MG very

often produced errors in estimating item parameters and stopped, particularly in the 300 sample

size condition. Under the 3,000 sample size condition, however, BILOG-MG worked properly.

The results of BILOG-MG runs are provided in Tables 1 and 2 only for the 3,000 sample size

condition.

Weighted Variance
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The weighted variances of each of five methods are presented in Table 1 and the average

weighted variances of each method are displayed in Figure 1.  One expected result that holds for

all methods was that the weighted variances decreased when the sample size increased.  OEM

method produced the smallest weighted variance under the 300 and 1,000 sample size

conditions, Stocking’s Method A the second smallest weighted variance, MEM method the third

smallest weighted variance, and Stocking’s Method B produced the largest weighted variance.

For the 3,000 sample size condition, the BILOG/Prior method produced the largest weighted

variance while the rank order of the weighted variances was the same for the other methods.

However, differences in the weighted variance across methods appeared not to be substantial.

The results in Table 1 and Figure 1 show that although MEM utilized item response

information on both operational and pretest items more intensively by taking multiple EM cycles

than OEM did, it produced a larger weighted variance.  The results also show that Stocking’s

Method B, which transforms the scale of pretest items that were calibrated by Stocking’s Method

A to the scale of operational items, resulted in a larger weighted variance than Stocking’s

Method A did.

Weighted Squared Bias

The weighted squared biases of each method for different sample size conditions are

presented in Table 1, and the average weighted squared biases of each method for different

sample size conditions are plotted in Figure 2.  The weighted squared bias was less affected by

the changes of sample size than the weighted variance across all methods.  For example, for

OEM, Stocking’s Method A, and Stocking’s Method B, there were only minor differences in the

weighted biases between the 1,000 and 3,000 sample size conditions.  In particular, Stocking’s

Method B produced similar weighted squared biases across all sample size conditions.
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Comparing the results of the methods in terms of the weighted squared bias, the MEM

method performed better than the other methods in this study.  The MEM method produced the

smallest weighted squared bias across all sample sizes.  Even the weighted squared bias of the

MEM method under the 300 sample size condition was smaller than the weighted squared biases

of most methods for any sample size, except that of the BILOG/Prior method for a sample size of

3,000.  The BILOG/Prior method worked well for the 3,000 sample size.  The results of MEM

and BILOG/Prior show that the methods using MMLE with multiple EM cycles tend to produce

smaller weighted squared biases than other methods.  Table 1 and Figure 2 indicate that

Stocking’s Method B produced the second smallest weighted squared biases across all sample

sizes, except that of the BILOG/Prior method for the 3,000 sample size.  The weighted squared

biases of Stocking’s Method B became slightly larger as sample sizes increased, which was not

the case for the other methods.  However, the absolute differences among the biases for the

various sample sizes were small, so the differences may be due to sampling error.  Stocking’s

Method A shows the largest weighted squared biases across all sample size conditions.

Unlike the weighted variance, MEM and Stocking’s Method B produced obviously

smaller weighted squared biases than OEM and Stocking’s Method A, respectively, across all

sample sizes.

Weighted Mean Squared Error

The weighted mean squared error of each method for different conditions are presented in

Table 1.  Table 2 presents the average weighted mean squared errors by the methods and sample

sizes along with standard errors of the average weighted mean squared errors over replications.

Figure 3 plots a ± 1 standard error band around the means of the weighted mean squared errors,

which is about a 68% confidence interval.
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Figure 3 clearly shows that when BILOG/Prior is put aside, MEM tends to have the

smallest WMSE, Stocking’s Method B the second smallest WMSE, OEM the third smallest

WMSE, and Stocking’s Method A tends to produce the largest WMSE across all sample size

conditions.  The BILOG/Prior method under the 3,000 sample size performed similarly to MEM.

It seems that since BILOG/Prior and MEM are mathematically the same (although they are

different in actual implementation), the WMSEs of both methods were similar.  The results in

Figure 3 show that Stocking’s Method B produced smaller total errors in parameter estimation

than Stocking’s Method A.  This reflects that the scale transformation through anchor items is

associated with decreases in total error for Stocking’s Method B.  The MEM method also

produced smaller total error than OEM did.

The relative values of WMSEs for the methods were consistent across different sample

size conditions.  Some WMSE intervals for the methods within sample size conditions

overlapped (see Figure 3).  However, the MEM method always produced the smallest WMSE

and Stocking’s Method A produced the largest WMSE under the different sample size conditions

studied.

Conclusion and Discussion

Our primary goal in this study was to compare the properties of five online pretest item

calibration/scaling methods (MEM,  OEM, Stocking’s Method A, Stocking’s Method B, and

BILOG/Prior) under three different sample size conditions (300, 1,000, and 3,000).  We expected

that the results would provide CAT practitioners with guidance on which method(s) produce

smaller parameter estimation error under small to large sample size conditions.

The MEM method produced the smallest total error (i.e., WMSE) in pretest item

parameter estimation from small to large sample sizes.  The BILOG/Prior method did not work
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appropriately under the 300 and 1,000 sample size conditions, but it performed similarly to

MEM under the 3,000 sample size.  Stocking’s Method B produced the second smallest WMSE

under the 300 and 1,000 sample size conditions (and the third smallest WMSE under the 3,000

sample size condition).  The OEM method produced the next smallest WMSE.  Stocking’s

Method A provided the largest total error.

The MEM method appears to be the best choice among the methods used in this study

because it produced the smallest parameter estimation errors for all sample size conditions.

Stocking’s Method B also worked very well, but it requires anchor items that would make test

lengths longer when other things are equal.  The BILOG/Prior method did not seem to work with

small sample sizes.  Until more appropriate ways of handling sparse data with BILOG are

devised, the BILOG/Prior method may not be a reasonable choice.  Because Stocking’s Method

A has the largest weighted total error as well as a theoretical weakness (i.e., treating estimated

ability as true ability), there appears to be little reason to use it. The MEM method should be

preferred to OEM unless amount of time involved in iterative computation is a great concern.

Otherwise, OEM and MEM are mathematically similar and OEM produces larger errors than the

MEM method.

It is emphasized that the results reported here should be interpreted with caution due to

the small to modest size of some of the reported error differences among the methods and the use

of qualified pretest items.  The pretest items used in this study were actually operational items, so

the quality of the items was relatively high.  When the pretest items are poor or do not fit the 3PL

model, the performance of the methods considered in this study may be different.  In practice,

OEM may perform better than MEM when there are some bad pretest items.  Further research
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should look at performance of methods when some pretest items are bad and there is a sparse

matrix of item responses for pretest items.
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Table 1. Weighted Mean Squared Error, Weighted Squared Bias, and Weighted Variance for Pretest Item Calibration Methods

Sample300 Sample1000 Sample3000
MMLE/OEM WMSE WSBias WVariance WMSE WSBias WVariance WMSE WSBias

Item1 1.61E-03 5.35E-04 1.07E-03 7.56E-04 3.93E-04 3.63E-04 5.02E-04 3.57E-04
Item2 1.65E-03 4.84E-04 1.17E-03 6.78E-04 3.20E-04 3.57E-04 4.65E-04 3.41E-04
Item3 1.12E-03 4.14E-04 7.04E-04 8.12E-04 5.29E-04 2.83E-04 5.61E-04 4.49E-04
Item4 1.65E-03 3.18E-04 1.33E-03 6.13E-04 2.01E-04 4.12E-04 3.88E-04 2.52E-04
Item5 1.36E-03 2.00E-04 1.16E-03 5.14E-04 8.40E-05 4.30E-04 3.11E-04 1.40E-04
Item6 1.22E-03 3.64E-05 1.19E-03 4.39E-04 7.46E-05 3.64E-04 2.65E-04 9.22E-05
Item7 1.45E-03 3.15E-04 1.14E-03 6.52E-04 2.50E-04 4.02E-04 3.94E-04 2.52E-04
Item8 1.23E-03 2.11E-05 1.21E-03 4.82E-04 6.91E-05 4.13E-04 2.34E-04 9.45E-05
Item9 8.39E-04 1.62E-04 6.78E-04 3.87E-04 1.72E-04 2.15E-04 2.38E-04 1.74E-04
Item10 1.49E-03 4.28E-04 1.06E-03 6.62E-04 2.47E-04 4.16E-04 3.52E-04 1.97E-04
Mean 1.36E-03 2.92E-04 1.07E-03 6.00E-04 2.34E-04 3.66E-04 3.71E-04 2.35E-04
SD* 2.62E-04 1.81E-04 2.14E-04 1.39E-04 1.49E-04 6.83E-05 1.13E-04 1.19E-04

MMLE/MEM
Item1 1.43E-03 2.88E-04 1.14E-03 5.29E-04 1.35E-04 3.94E-04 2.14E-04 5.24E-05
Item2 1.36E-03 7.13E-05 1.28E-03 4.11E-04 4.12E-06 4.07E-04 1.46E-04 3.93E-06
Item3 8.09E-04 4.24E-05 7.66E-04 3.57E-04 3.75E-05 3.20E-04 1.30E-04 3.28E-06
Item4 1.49E-03 4.70E-05 1.45E-03 5.05E-04 1.45E-05 4.90E-04 1.58E-04 2.08E-06
Item5 1.30E-03 3.17E-05 1.27E-03 5.07E-04 1.50E-05 4.92E-04 2.04E-04 6.42E-06
Item6 1.29E-03 3.15E-05 1.26E-03 4.10E-04 1.59E-05 3.94E-04 1.92E-04 5.99E-06
Item7 1.27E-03 3.41E-05 1.23E-03 4.60E-04 3.78E-06 4.56E-04 1.67E-04 2.73E-06
Item8 1.30E-03 1.67E-05 1.28E-03 4.33E-04 2.10E-06 4.31E-04 1.49E-04 7.27E-08
Item9 7.97E-04 1.89E-05 7.79E-04 2.59E-04 7.74E-06 2.51E-04 7.59E-05 2.91E-06
Item10 1.27E-03 1.11E-04 1.16E-03 4.95E-04 1.29E-05 4.82E-04 1.86E-04 3.25E-06
Mean 1.23E-03 6.92E-05 1.16E-03 4.37E-04 2.49E-05 4.12E-04 1.62E-04 8.31E-06

SD 2.37E-04 8.18E-05 2.22E-04 8.26E-05 4.00E-05 7.81E-05 4.07E-05 1.56E-05
Stocking's Method A

Item1 1.71E-03 5.57E-04 1.15E-03 8.37E-04 4.42E-04 3.94E-04 6.09E-04 4.51E-04
Item2 1.80E-03 5.15E-04 1.28E-03 7.67E-04 3.68E-04 3.99E-04 5.09E-04 3.75E-04
Item3 1.46E-03 6.76E-04 7.83E-04 1.13E-03 8.17E-04 3.11E-04 7.95E-04 6.80E-04
Item4 1.75E-03 3.05E-04 1.44E-03 6.51E-04 1.95E-04 4.56E-04 3.98E-04 2.50E-04
Item5 1.49E-03 2.37E-04 1.26E-03 5.76E-04 1.11E-04 4.65E-04 3.62E-04 1.78E-04
Item6 1.31E-03 7.14E-05 1.24E-03 5.22E-04 1.32E-04 3.90E-04 3.44E-04 1.62E-04
Item7 1.55E-03 3.09E-04 1.24E-03 7.00E-04 2.59E-04 4.41E-04 4.20E-04 2.65E-04



Table 1. (continued )

WMSE WSBias WVariance WMSE WSBias WVariance WMSE WSBias
Item8 1.35E-03 6.04E-05 1.29E-03 5.97E-04 1.65E-04 4.32E-04 3.43E-04 1.97E-04
Item9 1.15E-03 5.01E-04 6.47E-04 8.08E-04 5.92E-04 2.16E-04 6.54E-04 5.87E-04
Item10 1.58E-03 4.40E-04 1.14E-03 7.69E-04 3.18E-04 4.51E-04 3.96E-04 2.29E-04
Mean 1.51E-03 3.67E-04 1.15E-03 7.36E-04 3.40E-04 3.96E-04 4.83E-04 3.37E-04

SD 2.06E-04 2.06E-04 2.45E-04 1.73E-04 2.25E-04 7.78E-05 1.55E-04 1.81E-04
Stocking's Method B

Item1 1.52E-03 3.22E-04 1.20E-03 6.55E-04 2.27E-04 4.28E-04 3.81E-04 2.17E-04
Item2 1.49E-03 1.55E-04 1.33E-03 5.93E-04 1.32E-04 4.61E-04 2.92E-04 1.43E-04
Item3 1.07E-03 1.66E-04 9.06E-04 7.12E-04 3.47E-04 3.66E-04 4.48E-04 3.06E-04
Item4 1.51E-03 4.26E-05 1.47E-03 5.65E-04 9.26E-05 4.73E-04 2.33E-04 8.10E-05
Item5 1.38E-03 5.31E-05 1.33E-03 5.21E-04 3.32E-05 4.87E-04 2.37E-04 4.41E-05
Item6 1.38E-03 6.26E-05 1.32E-03 4.43E-04 2.66E-05 4.16E-04 2.38E-04 4.83E-05
Item7 1.31E-03 9.71E-05 1.21E-03 5.77E-04 8.99E-05 4.87E-04 2.20E-04 6.44E-05
Item8 1.32E-03 1.41E-05 1.30E-03 5.16E-04 5.40E-05 4.62E-04 2.26E-04 6.93E-05
Item9 9.02E-04 1.11E-04 7.90E-04 4.81E-04 2.26E-04 2.55E-04 3.61E-04 2.81E-04
Item10 1.40E-03 1.93E-04 1.21E-03 5.71E-04 7.03E-05 5.00E-04 2.71E-04 9.06E-05
Mean 1.33E-03 1.22E-04 1.21E-03 5.63E-04 1.30E-04 4.33E-04 2.91E-04 1.34E-04

SD 1.98E-04 9.12E-05 2.07E-04 7.98E-05 1.04E-04 7.47E-05 7.91E-05 9.85E-05
BILOG/PRIOR

Item1 2.67E-04 8.03E-05
Item2 1.91E-04 1.93E-05
Item3 1.66E-04 8.11E-06
Item4 1.96E-04 7.27E-06
Item5 2.26E-04 7.73E-06
Item6 NA NA NA NA NA NA 2.47E-04 3.93E-05
Item7 2.05E-04 2.12E-05
Item8 1.78E-04 1.16E-05
Item9 8.42E-05 3.26E-06
Item10 2.16E-04 9.55E-06
Mean 1.98E-04 2.08E-05

SD 5.02E-05 2.34E-05
* Standard deviation over pretest items
WMSE = Weighted Mean Squared Error; WSBias = Weighted Squared Bias; WVariance = Weighted Variance
NA = Not available because BILOG-MG stopped inappropriately  



Table 2. Mean of Weighted Mean Squared Error

Sample Size
Method 300 1000 3000
MMLE/OEM 1.36E-03 (4.07E-04) 6.00E-04 (1.59E-04) 3.71E-04 (8.13E-05)
MMLE/MEM 1.23E-03 (3.90E-04) 4.37E-04 (1.14E-04) 1.62E-04 (4.65E-05)
Stocking's Method A 1.51E-03 (4.53E-04) 7.36E-04 (1.89E-04) 4.83E-04 (9.99E-05)
Stocking's Method B 1.33E-03 (4.06E-04) 5.63E-04 (1.72E-04) 2.91E-04 (8.55E-05)
BILOG/Prior NA NA 1.98E-04 (6.16E-05)
( ) Standard error over replications



Figure 1.  Average Weighted Variance for Each Method
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Figure 2.  Average Weighted Squared Bias for Each Method
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Figure 3. About a 68% Confidence Interval Around the Average 
Weighted Mean Squared Errors for Each Method
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