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Abstract

The relative performance of separate and concurrent unidimensional IRT estimation could
be affected by multidimensionality of the data. This paper reports the results of a simu-
lation study comparing the relative performance of unidimensional estimation methods on
multidimensional data. Data based on a two-dimensional IRT model are simulated accord-
ing to equivalent and nonequivalent groups designs. The results of separate and concurrent
unidimensional estimation are compared with the results of concurrent estimation under the
two-dimensional model. In this study it becomes clear that multidimensionality of the data can
effect the relative performance of separate and concurrent unidimensional estimation methods.
The relative performance of separate and concurrent estimation was different for the equiva-
lent and nonequivalent groups conditions. In the nonequivalent group conditions, the error for
the unidimensional estimation methods was very large compared to the error obtained using
two-dimensional IRT estimation.

1 Introduction

The latent variable in unidimensional IRT (item response theory) models is unidenti-
fied up to a linear transformation. In each calibration, restrictions on the parameters
are imposed to define the scale on which the parameters are measured. In a common
item nonequivalent group design two forms of a test with some items in common are
administered to samples from two populations. If item parameters for the two forms
are estimated independently, the parameter estimates for the different forms will not
be on the same scale. Using these estimates, the forms are brought on a common
scale via minimization of some loss function. Techniques for this purpose have been
developed by Haebara (1980), Marco (1977), Loyd and Hoover (1980) and Stocking
and Lord (1983). An alternative procedure to obtain estimates on a common scale
is concurrent estimation of multiple forms. Using a so-called marginal maximum
likelihood (MML) procedure, the parameters of the IRT model are directly esti-
mated on a common scale (Bock & Zimowski, 1996; Glas & Verhelst, 1989). Kiefer
and Wolfowitz (1956) have shown that the MML estimator is strongly consistent

under fairly reasonable regularity conditions. Therefore in concurrent estimation,



standard asymptotic theory on confidence intervals and the distribution of statistics
computed using MML estimates directly applies.

A number of studies has been carried out to compare the performance of con-
current and separate estimation (Hanson & Béguin, 1999; Kim & Cohen, 1998;
Petersen, Cook & Stocking, 1983; Wingersky, Cook & Eignor, 1987). These studies
used data that were simulated from the same unidimensional model also used for
item parameter estimation. With real data the simple unidimensional model would
probably be misspecified by some extent. This misspecification could affect the rel-
ative performance of unidimensional separate and concurrent estimation. A source
of misspecification is multidimensionality of the data. In this paper, the effect on
performance of unidimensional separate and concurrent estimation will be studied
for data that in fact follows a multidimensional IRT model (Lord & Novick, 1968;
McDonald, 1967; Reckase, 1985 and Ackerman, 1996a and 1996b). In this paper the
effect of multidimensionality of the data on performance of separate and concurrent
estimation will be studied.

Multidimensional IRT models for dichotomously scored items were first presented
by Lord and Novick (1968) and McDonald (1967). These authors use a normal ogive
to describe the probability of a correct response. McDonald (1967,1997) developed
an estimation procedure based on an expression for the association between pairs
of items derived from a polynomial expansion of the normal ogive. This procedure
is implemented in NOIIARM (Normal-Ogive Harmonic Analysis Robust Method,
Fraser, 1988). An alternative using all information in the data, and therefore la-
beled ”Full Information Factor Analysis”, was developed by Bock, Gibbons, and
Muraki, (1988). This approach is a generalization of the marginal maximum likeli-
hood (MML) and Bayes modal estimation procedures for unidimensional IRT models
(see, Bock & Aitkin, 1981, Mislevy, 1986), and has been implemented in TEST-
FACT (Wilson, Wood, and Gibbons, 1991). A comparable model using a logistic
rather than a normal-ogive representation has been studied by Andersen (1985),
Glas (1992), Reckase (1985, 1997) and Ackerman (1996a and 1996b).

Considerable attention has been given to the effect of multidimensionality on
parameter estimates of unidimensional IRT models. Ansley and Forsyth (1985) ex-
amined the unidimensional estimates from two-dimensional data generated using a
noncompensatory model. Ackerman (1987a) compared performances of unidimen-
sional IR'T estimates under a two-dimensional compensatory- and non-compensatory
model. Ackerman (1987b) also investigated the effect of using multidimensional
items in a computerized adaptive testing procedure based on a unidimensional IR'T
model. He found that respondents with different proficiency composites tend to
receive tests with a different content. Stout (1987, 1990) introduced the concept of

essential dimensionality. Analogous to the common practise in factor analysis, only



the major dimensions present in the data are used while the minor dimensions are
ignored. From his research it was concluded that the existence of exactly one major
dimension -so called essential unidimensionality- provides a justification of the use
of IRT models that require unidimensionality. Finally, Spray, Abdel-fattah, Huang
and Lau (1997) investigated the effects of a multidimensional item pool and latent
proficiency space on the accuracy of the decisions made in computerized classifica-
tion testing using the 3-PL model. They found that the procedure was fairly robust
against violations of unidimensionality.

Also a number of multidimensional equating procedures have been proposed.
Hirsch (1989) proposed a procedure that places the separate estimates of a mul-
tidimensional two-parameter logistic model for both forms of a common-examinee
design on a common scale. Davey, Oshima and Lee (1996) proposed a procedure to
place the estimates of a multidimensional three-parameter model for both forms of a
common-item- or common-examinee-design on the same scale. T.i and Lissitz (1998)
used simulation studies to compare a number of different procedures to place the
parameters of multidimensional IRT models on the same scale. Finally, Bolt (1999)
used simulation studies to investigate whether unidimensional IRT true-score equat-
ing is more adversely affected by the presence of multidimensionality than conven-
tional linear- and equipercentile equating. He found that for correlations between
dimensions equal to 0.7 or larger, IRT true-score equating performed slightly better
than the conventional procedures. At lower correlations, IRT-equating performed
almost as good as equipercentile equating.

In this paper, performance of separate and concurrent estimation of a unidimen-
sional three-parameter logistic (3-PL) model (Birnbaum, 1968; Lord, 1980) applied
on multidimensional data are compared. To obtain benchmarks to evaluate these
unidimensional estimates, a 3 parameter normal ogive model (3PNO) and its two di-
mensional counterpart ((2+2)PNO) are estimated. In these models the probability

of a correct response of a person ¢ on an item j, denoted Y;; = 1, is written as

P(Y; =1, Qiaoéjaﬂja%') = 79+ (1- ’Yi>q)<77ij - ﬂ]) (1)

where v, is the guessing parameter, ; the difficulty parameter of the item j, ®
denotes the standard normal cumulative distribution function, and 7,; is a weighted
proficiency. For the 3PNO model 7,; = «a;0; with 0; the proficiency of person 1
and a;, the discrimination parameter of item i. For the (24+2)PNO model 7n,; =
22:1 ajgliq with aj, the discrimination parameter or factor loading of item j on
the ¢'" dimension, and 6,, the proficiency parameter of person i on the ¢ dimen-
sion. The 3PNO and (2+2)PNO model are estimated using a Markov chain Monte
Carlo (MCMC) estimation procedures (Béguin, 2000). These procedures are gen-

eralizations to incomplete designs of procedures that use Gibbs sampling (Gelfand



& Smith, 1990) with data-augmentation to estimate models in the normal ogive

context (Albert, 1992; Béguin & Glas, 1998).

2 Data

To simulate data with realistic properties, this study uses item parameter estimates
of the (242)PNO model obtained on data from examinations at the end of secondary
education in the Netherlands. These data consist of 50 dichotomously scored items
from the examination ’language comprehension in FEnglish’ for the years 1992 and
1995. The original examinations have no items in common, but additional data
are available where persons responded to items from both examinations. The data
collection design is beyond the scope of this paper. For a description of the data-
collection design applied to examinations in the Netherlands the reader is referred to
Glas and Béguin (1996) or Béguin (2000). As mentioned above, the item parameters
are obtained using a two dimensional (24-2)PNO MCMC estimation procedure. In
this estimation procedure the item parameters are estimated assuming different
proficiency distributions for the groups in the design. So this procedure is a multiple-
group concurrent estimation procedure.

To simulate data according to a common-item nonequivalent group design, 10
items were randomly selected from each of the two examinations. These 20 items
were used as items common to two test forms, A and B. Form A was created using
the 20 selected items and the 40 remaining items from one of the examinations.
Form B contained the 20 selected items and the 40 remaining items from the other
examination. So, Form A contained all 50 items from the 1992 examination and 10
items from the 1995 examination, and Form B contained 10 items from the 1992
examination and all 50 items from the 1995 examination. To give an impression
of the item parameters used in estimating the data, in Figure 5.1, the values of
the factor loading on the second dimension, s, the difficulty parameter 3, and the
guessing parameter v are plotted against the value of the factor loading on the first

dimension ;.

3 Method

Samples of item responses for forms A and B are obtained for 6 different conditions.
These conditions differ in the covariance of the proficiency distribution and in dif-
ference in mean proficiency between the two populations. Three levels of covariance
between dimensions and two levels of mean proficiency difference between the two

populations, are assumed. The three levels of covariance have a unit variance on
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Table 1. Overview of the conditions

Condition Mean Proficiency Covariance
Form A Form B Both Forms
1
! (0.0) (0.0) ( 0.5 1.25 )
2 00  (0.0) !
’ ’ 0.7 149
3 00  (0.0) !
’ ’ 09 181
1 00  (10) !
’ ’ 0.5 1.25
5 00  (10) !
’ ’ 0.7 149
6 00  (L0) !
’ ’ 0.9 181

the first dimension and differ in the covariance and the variance on the second di-
mension. The three conditions have a covariance of .5, .7 and .9 with a variance on
the second dimension of 1.25, 1.49 and 1.81, respectively. The mean proficiency on
the first dimension for the Form A respondents is 0 in all conditions while the mean
proficiency for the Form B respondents is either 0 or 1. The mean proficiency for
the second dimension is 0 in all conditions. For a summary of the characteristics of
the conditions see Table 1. The first three conditions can be considered equivalent
groups conditions, since the proficiency distributions of the populations administered
Form A and B are equal. The equivalent groups design differs in the covariance and
variance on the second dimension. The last three conditions are nonequivalent group
conditions with the same covariances as in the first three conditions. The conditions
will be referred to using the covariance between dimensions and an indication of
whether the groups are equivalent or nonequivalent. For example, condition 5 in

Table 1 will be referred to as: nonequivalent .7 covariance condition.



3.1 Estimation of the parameters

For each condition 20 samples of both forms are generated with 2000 persons per
form. In each sample and each condition three sets of parameter estimates using
BILOG-MG (Zimowski, Muraki, Mislevy & Bock, 1996) are obtained, two sets for
cach separate form (separate estimation) and one for both forms simultaneously
(concurrent estimation). Also for each sample 2 MCMC runs are performed, a
3PNO run and a (242)PNO run.

In BILOG-MG, it was specified that normal population distributions were as-
sumed. Further, the default priors were used on the a,and ¢ parameters. To support
convergence an additional N(0,2) prior distribution was used on the b parameter.
Appendix A gives the BILOG-MG control files used to obtain parameter estimates
for each simulated sample. The MCMC procedure consisted of 3000 iterations with
a burn-in period of 1000 iterations. As starting values for the 3-PNO model oo = 1,
B =0 and v = 7., for all items, and proficiency, § = 0, for each respondent
were used . The priors on the item parameters were 7(a) ~ N(1.,0.25), 7((3) ~
N(0,0.5) and 7(7y) ~ Beta(6,16), which is equivalent to 20 prior observations with
probability 0.25. The prior on 7 is the same as the default prior used in BILOG-MG.
As starting values for the (242)PNO model the true parameters were used for the
item parameters, and @ = 0 was used for the proficiency of each respondent. The
priors on the item parameters were 7(a) ~ N(0.,0.25), 7(5) ~ N(0,0.5) and 7(7y) ~
Beta(50 # Yipye; 50 % (1 — Yiue))- In the (242)PNO model, more parameters had to
be estimated, and to support the stability of the estimates a more informative prior
was used on 7. Furthermore, the mean of the prior on o was set equal to 0, because
in the (24-2)PNO model the o parameters are not restricted to be positive.

In the separate estimation conditions, the parameters of Form A and Form B
must be brought on a common scale. This scaling is performed with the Stocking
and Lord (1983) method (see also Kolen & Brennan, 1995) which was among the
best performing methods in the comparison by Hanson & Béguin (1999). The three
conditions where the populations administered Form A and B have equal proficiency
distributions (see Table 1), can be considered equivalent groups conditions. In an
equivalent groups design it is not necessary to assume different populations for the
groups taking Form A and Form B. Consequently, in separate estimation of the
forms, no linking is necessary to bring the forms on a common scale. By the same
token, one can assume a single population for both samples if concurrent estimation
is applied. In this study, a single population is assumed in the estimation of the
unidimensional models in the conditions where the populations administered Form
A and B have equal proficiency distributions. Consequently, in separate estimation
no scaling is performed and in BILOG-MG concurrent estimation a single group
is specified. In the (2+2)PNO model different population distributions are esti-
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mated due to the current limitations of the available software. Because Hanson and
Béguin (1999) found indications that separate estimation with scaling improved per-
formance in equivalent group conditions, separate estimation with scaling was also
performed in conditions where the populations administered Form A and B have
equal proficiency distributions.

In the separate estimation conditions there will be two sets of item parameter
estimates for the common items. In this study, the Form A item parameter esti-
mates were used as the parameter estimates of the common items for the purpose
of computing the criteria used to evaluate the quality of the item parameter scaling.

An alternative would be using the average of the item parameter estimates for the

two forms (Kim & Cohen, 1998).

3.2 Evaluation of scaling

To evaluate the quality of the item parameter scaling, differences in results of equat-
ing scores on Form B to scores on Form A are assessed. Two criteria are used that
are based on the IRT observed-score (OS) equating of number-correct (NC) scores
(Zeng & Kolen, 1995) on Form B to scores on Form A. In this technique, equiper-
centile equating (Kolen & Brennan, 1995) is performed on the score distributions of
both forms computed for one population. Here, the score distributions of Form A

and B were estimated for the population administered Form A.

Estimating score distributions.

Using the estimated item and population parameters, the compound binomial dis-
tribution was used to generate the score distribution of respondents of a given pro-
ficiency, 8. The score distribution for population a can be computed by integrating
over the population distribution of 8, that is,

fr@) = [ [ 3 1(210)9(8 | 1o, Sa)db, 2)
{afr}

where {z |r} stands for the set of all possible response patterns resulting in a score
r. In the case of normal distributed populations, the integral can be computed
using Gauss-Hermite quadrature (Abramowitz & Stegun, 1972). At each of the
quadrature points, a recursion formula by Lord and Wingersky (1984) was used
to obtain f,(x]0), the score distribution of respondents of a given proficiency, 6.
To obtain accurate results it is necessary to apply a large number of quadrature
points. Therefore, 180 quadrature points are used in the unidimensional case and

100 quadrature points are used for each dimension in the multidimensional case.
In the conditions where an MCMC estimation procedure was used, the score dis-

tribution was estimated as follows. After the burn-in period for the Gibbs-sampler,
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every 20 iterations the procedure by Lord and Wingersky was applied with current
values of the person and item parameters of the Gibbs-sampler. The estimated
score distribution was the mean over 100 thus obtained score distributions. A nice
property of this procedure was that the uncertainty of the parameter estimates was

taken into account in the estimation of the score distribution.

Criteria

Evaluation of performance of equating in the 6 conditions was based on two different
criteria. First, the differences between the Form B score distributions estimated un-
der various models and the population Form B score distribution computed with the
model used to generate the data were compared. Second, equivalent score points
from the observed score equating function under different models were compared
with the equivalent score points obtained with the model used to generate the data.
The evaluation of the score distributions served two purposes. On one hand, compar-
ison of score distributions provided an evaluation of model fit. On the other hand, it
provided insight in the quality of the equating process, since the score distributions
play a crucial role in IRT number-correct equating.

Let firuer be the frequency of score point r based on the parameters of (2+42)PNO
that were used in generating the data. Let f; be the frequency of score point r
estimated from sample j. To compare these score distributions, the mean over score
points of the mean squared error (MSE) was calculated by summing over the 20
samples and the k 4+ 1 score points, that is,

20 k

MSE_E;TZ% f]r ftruer . (3>

The MSE can be decomposed into a term representing the mean over score points
of the squared bias (mean bias) and a term representing the mean over score points

of the variance (mean Variance>:

1k 20 k

MSE = k‘ Z(f ftruer 20]{7 ZZ fJT fT ’ (4>

r=0 j=1r=0

where f, is the mean over samples,

o 1 20
fr = 2_0§f37’ (5>

A measure of model fit can be obtained if the terms of (3) are divided by the true

frequency, resulting in the test-statistic,

1 b f]r ftrue,r)2

j=1r=0 ftrue,r
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Although, the distribution of this statistic is unknown (Glas & Verhelst, 1989), the
values provide an —admittedly fallible— basis for comparison.

In the second criterium, equivalent score points from IRT observed score equat-
ing obtained using various models were compared with the equivalent score points
obtained with the model used to generate the data. Let si., be the score point
on the new examination that is equivalent with the score point 7 on the reference
examination, based on the true parameter values. Let s;. be the score point on
the new examination that is equivalent with a score point r, and let equivalence
be based on the parameters estimates of sample j. Furthermore, let p, 4. be the
probability of obtaining a score r based on the true parameters values. To compare
the equivalent score points, a weighted mean squared error (WMSE) was calculated
by summing over samples and the k + 1 score points of the reference examination.

The score points were multiplied by p; ;rye, Which resulted in

1 k 20
WMSE — 2_0 Zpr,true Z(Sjr - Strueﬂ’)2‘ (7>
r=0 7=1

The weighted mean squared error can be decomposed into terms representing the
weighted sum of the squared bias (weighted bias) of equated score points and

weighted sum of the variance (weighted variance) of the equated score points,

20

k 1 k
WMSE = Zpr,true<3_r - strue,r)2 + 2_0 Zpr,true Z(sjr - 8_7’)27 (8>
r=0 r=0

J=1

where 5, is the mean equivalent score of score point j over the samples, that is,

1 20
% =95 2 % ¥

The weighted mean absolute error (WMAE) is obtained if the squared error in

(7) is replaced by the absolute value of the error, so

20

1 k
WMAE = 2_0 Zpr,tme Z lsjr — Strue,r| - (10>
r=0

J=1

4 Results

Two factors are investigated in this study: 1) the performance of equating using
concurrent versus separate estimation. 2) the performance of equating using MCMC
(24+2)PNO versus BILOG-MG or 3PNO concurrent estimation. Except for two of
the data sets in the separate estimation condition all BILOG-MG and MCMC runs

10



converged. The two runs that did not converge were separate estimation runs on
group A samples from nonequivalent groups conditions. One was a 0.5 covariance
samples and the other was a 0.9 covariance sample. Although the convergence
criterium was not met after 40 EM and 20 Newton iterations, the item parameter
estimates of these samples where within reasonable bounds.

In general, the results obtained using BILOG-MG concurrent estimation were
similar to the results obtained using MCMC estimation of the 3PNO model. Fur-
thermore, the results obtained using BILOG-MG for both concurrent and separate
estimation were also similar to results obtained using a preliminary version of an
open-source IRT estimation toolkit (Hanson, 2000).

First, the true and estimated frequency distribution of Form B were compared.
To illustrate the results, the frequency distributions for the nonequivalent groups
with covariance 0.9 condition are plotted in Figure 2. The frequency distribution
obtained using the true parameters is plotted together with the estimated frequency

distributions of the 20 different samples.

From Figure 2 it becomes clear that the estimated frequency distributions based
on the unidimensional BILOG-MG estimates deviated from the frequency distribu-
tion based on the true parameters. For both the separate and concurrent estimates,
the estimated frequencies are too small in the top of the distribution and to large
in the upper tail. As might be expected, the frequency distributions based on the
estimates from the (242)PNO model showed only minor deviations from the fre-
quency distribution based on the true parameters. Figure 3 presents the estimated
frequency distributions for the .5 and .7 covariance nonequivalent groups condition
and based on the BILOG-MG concurrent estimation. It becomes clear that the de-
viation observed in the .9 covariance condition (Figure 2b) is smaller for the .7 and
.5 conditions.

In Table 2, the mean squared error, bias and variance are given for the different

conditions and estimation methods, together with the value of the X?2-statistic.

The performance of the unidimensional model relative to the multidimensional
model differs in the equivalent versus nonequivalent groups conditions. In the equiva-
lent groups conditions the MSE based on the unidimensional model is of the same or-
der of magnitude as the MSE obtained using the (24+2)PNO model. In the nonequiv-
alent groups conditions the MSE based on the unidimensional model was far larger
than the MSE based on the (24+2)PNO model. The bias in the unidimensional esti-
mation method increased with the increase in covariance and variance in the second
proficiency dimension.

In the equivalent groups conditions the MSE, bias and variance were smaller

11



(a) Separate estimation (b) Concurrent estimation
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Figure 2. Score distributions for Form B in the nonequivalent groups covariance .9
condition, determined using the true proficiency distribution of the population

administered Form A.
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(a) Covariance .7 with concurrent (b) Covariance .5 with concurrent
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Figure 3. Score distributions for Form B determined using the true proficiency

distribution of the population administered Form A.

for the concurrent estimation condition than for the separate estimation condition.
From comparison of the separate estimation method with and without scaling, it is
observed that the 'no scaling’ condition resulted in a lower MSE, variance, and bias.

In the nonequivalent groups conditions, the MSE; and bias were larger for the con-
current estimation method in the covariance .7 and .9 condition. In the covariance
.5 condition the MSE and bias were larger for the separate estimation method. As
mentioned before, for both concurrent and separate estimation methods the MSE
and bias are very large compared to the MSE and bias based on the (2+2)PNO
estimates. Similar to the results found in the equivalent groups conditions, the
MSE and bias increased with the increase in covariance and variance in the second
proficiency dimension.

Comparing the X? for the different conditions and estimation methods, the fol-
lowing results were found. The values of X2 for the (24+2)PNO estimation method
were slightly higher in the nonequivalent groups condition than in the equivalent
groups condition. For the unidimensional estimation methods the values of X?
were far higher in the nonequivalent groups condition than in the equivalent groups
condition. Further, the values of X? were smaller for the concurrent estimation
method than for the separate estimation method except for the .7 and .9 covariance
nonequivalent groups conditions. Note that it is unclear how these results should

be interpreted, since the distribution of the X? statistic is unknown and can differ
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Table 2. Mean squared error of estimated frequency

Design Cov. Estimation MSE Bias Variance X?
Equivalent groups 0.5  con 26 1.6 0.9 99.
sep 3.7 20 1.7 143.

sepNS 28 1.9 0.9  105.

242PNO 3.7 23 14 115

0.7  con 25 L7 0.8 106.

sep 4.3 24 1.9 158

sepNS 27 1.9 0.8 111.

242PNO 21 1.2 0.9 85.

0.9  con 3.8 29 0.8 197.

sep 4.4 3.2 1.3 201.

sepNS 4.0 3.1 0.9  200.

242PNO 25 L7 0.8 102.

Nonequivalent groups 0.5  con 12.4  10.5 1.9  575.
sep 15.0 13.2 1.8 696.

242PNO 3.1 2.2 0.9 146.

0.7  con 16.8 15.0 1.7 844

sep 15.7 13.6 2.1 765.

242PNO 6.1 4.3 1.9 229

0.9 con 21.8 204 1.5 1093.

sep 207 19.2 1.5 967.

242PNO 34 23 1.1 158

con: BILOG-MG concurrent estimation

sep: BILOG-MG separate estimation with scaling

sepNS: BILOG-MG separate estimation without scaling

2-+2PNO: MCMC concurrent estimation of the (2+2)PNO model

14



over conditions. The X2 is calculated by summation over 1,200 cells. However the

degrees of freedom of each X? value is unknown.

Table 3. Weighted error of equated scores

Design Cov. Estimation WMSE Bias Variance WMAE
Equivalent groups 0.5  con 0.35 0.16 0.19 0.35
sep 0.35 0.15 0.19 0.35

sepNS 0.36 0.18 0.19 0.36

24+2PNO 0.36 0.15 0.20 0.36

0.7  con 0.27 0.10 0.17 0.27

sep 0.33 0.13 0.20 0.33

sepNS 0.27  0.08 0.18 0.27

24+2PNO 0.27 0.11 0.16 0.27

09  con 0.26 0.12 0.15 0.26

sep 0.28 0.13 0.15 0.28

sepNS 0.33 0.15 0.18 0.33

24+2PNO 0.26  0.09 0.17 0.26

Nonequivalent groups 0.5  con 0.53 0.43 0.10 0.47
sep 0.68 0.56 0.12 0.54

24+2PNO 0.36 0.17 0.19 0.36

0.7 con 146 1.28 0.18 0.94

sep 0.95 0.86 0.09 0.66

24+2PNO 0.39 0.27 0.12 0.39

0.9 con 1.79  1.68 0.11 1.12

sep 1.13 1.04 0.09 0.75

24+2PNO 0.33 0.17 0.16 0.33

con: BILOG-MG concurrent estimation

sep: BILOG-MG separate estimation with scaling

sepNS: BILOG-MG separate estimation without scaling
2+42PNO: MCMC concurrent estimation of the (2+2)PNO model

In Table 3, the WMSE, weighted bias, weighted variance and WMAE are given for
the equated score points determined for different conditions and estimation methods.
In the three equivalent group conditions, there were not large differences among the
estimation methods in terms of WMSE, bias, variance, and WMAE. The separate
estimation methods resulted in somewhat higher values of the WMSE and WMAE.
The no scaling condition resulted in a lower WMSE in the covariance .7 condition

and in a higher WMSE in the covariance .9 condition. In the three nonequivalent
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groups conditions, the differences between the unidimensional estimation methods
and the (24+2)PNO estimation method were relatively large. This difference was
larger in the higher covariance conditions. In the nonequivalent groups conditions,
for the unidimensional estimation methods, the WMSE, bias and WMAEF increased
with increasing covariance. This effect was larger for the concurrent estimation
condition. Comparing the separate and concurrent BILOG-MG estimation methods
in the nonequivalent group conditions, the separate estimation method resulted in
lower WMSE, bias, variance and WMAE for the covariance .7 and .9 condition,
while the concurrent estimation method resulted in lower WMSE, bias, variance
and WMAE in the .5 covariance condition.

5 Conclusions

In this study, the effect of the estimation method on equating results were compared
when unidimensional models were applied on multidimensional data. As with any
simulation study considerable caution needs to be exercised in drawing conclusions
due to the small number of conditions investigated. In this case, the results per-
tain to only the two specific forms and six different conditions used in this study.
The only aspect varied in the conditions was the difference between the proficiency
distributions of the populations administered the forms. There was no variation in
data collection designs or the number of respondents in the design.

In the equivalent groups conditions, the different unidimensional estimation meth-
ods resulted in criteria that were quite similar to the criteria obtained using the mul-
tidimensional (24-2)PNO model. In these conditions the separate estimation method
where scaling is applied using the Stocking-Lord method resulted in generally higher
criterium values than the unidimensional concurrent estimation method. Further,
estimation without scaling resulted in similar or better performance than the sepa-
rate estimation method with scaling. These results are opposite to those found in
the simulation study by Hanson and Béguin (1999). They reported that concurrent
estimation generally resulted in better performance than separate estimation, and
better performance if scaling was applied in a equivalent groups design.

In the nonequivalent group conditions, the error for the unidimensional methods
was very large compared to the error obtained using the (24+2)PNO model. From
this result it must be concluded that performance of both separate and concurrent
estimation methods are unsatisfactory in these conditions. The error increased with
an increase in the covariance and variance of the second proficiency dimension. This
effect was stronger for the concurrent estimation method than for the separate esti-
mation method. Consequently the separate estimation method performed better in

the .7 and .9 covariance nonequivalent groups conditions. From the current analyses
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no well defined explanation for this effect could be found. In Figure 2 it is shown
that the estimated frequency for the nonequivalent group and .9 covariance condi-
tion deviates from the true distribution both in the top and the upper tail of the
distribution. In Figure 3, the score distributions based on BILOG-MG concurrent
estimates are plotted for the nonequivalent .5 and .7 covariance condition. From
Figure 3 it becomes clear that the misfit increases with increasing covariance. It is
not clear if this misfit is the source of the increase of the error. Also no explana-
tion is apparent for the occurrence of this misfit. Further research and additional
simulation studies are needed to clarify this result.

In the current study it remains unclear what effect of multidimensionality one
can expect in practise. Although the item parameter values used in this study were
estimates from an empirical dataset, it is unknown to what extent the different
multidimensional conditions are realistic. The item parameter values are obtained
together with proficiency distribution estimates from a concurrent multidimensional
MMIL estimation assuming multivariate normal proficiency distributions. Together,
these item and population parameter estimates are realistic parameter values, but
it is unclear if the item parameter values are also realistic if different population
distributions are assumed. To study the relative effects of different degrees of multi-
dimensionality under realistic conditions the parameter values of the various condi-
tions must be obtained from datasets that possess the degree of multidimensionality
one is interested in.

In general, the unidimensional IR'T models resulted in reasonable estimated score
distributions when applied on multidimensional data from an equivalent groups de-
sign. In this study the nonequivalent groups conditions, led to large deviations be-
tween the true and estimated score distributions. This effect increased with larger
covariance and second dimension variance and this increase is larger for the con-
current estimation method. The differences in results between this study and the
study by Hanson and Béguin (1999) illustrates the sensitivity of the results of sim-
ulation studies to the model used to simulate the data. The results of this study
make it clear that multidimensionality of the data affects the relative performance

of separate and concurrent unidimensional estimation methods.
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Appendix A

Separate Estimation

>GLOBAL DFNAME="NCME05A.1",NPARM=3,NTEST=1, SAVE;
>SAVE PAR="SEP05A01.PAR’;

>LENGTH NITEMS=60;

>INPUT NTOT=60,SAMPLE=2000,NALT=4,NID=4;

>ITEMS INUM=(1(1)60);

>TEST TNAME=EN;

(4A1,T6,60A1)

>CALIB NQPT=40,CYCLE=40,TPRIOR,NEWTON=15;

Concurrent Estimation - Equivalent Groups

>GLOBAL DFNAME="NCME05C.1", NPARM=3 NTEST=1, SAVE;
>SAVE PAR="CONO05A0L.PAR’;

>LENGTIH NITEMS=100;

>INPUT NTOT=100,SAMPLE=4000,NALT=4,NID=2 NFORM=2;
>ITEMS INUM=(1(1)100);

>TEST TNAME=EN;

>FORM1 LEN=60, INUMBERS=(1(1)60);

>FORM?2 LEN=60, INUMBERS=(41(1)100);

(2A1,1X,11,1X,60A1)

>CALIB NQPT=40,CYCLE=40, TPRIOR,NEWTON=>5;

Concurrent Estimation - Nonequivalent Groups

>GLOBAL DENAME="NCME15C.1’,NPARM=3 NTEST=1, SAVE;

>SAVE PAR="CONI15NOL.PAR’;

>LENGTH NITEMS=100;

>INPUT NTOT=100,SAMPLE=4000,NALT=4,NID=2, NGROUP=2,NFORM=2;
>ITEMS INUM=(1(1)100);

>TEST TNAME=EN;

>FORM1 LEN=60, INUMBERS=(1(1)60);

>FORM2 LEN=60, INUMBERS=(41(1)100);

>GROUP1 GNAME="A’, LEN=60INUMBERS=(1(1)60);

>GROUP2 GNAME="B" LEN=60,INUMBERS=(41(1)100);
(2A1,1X.I1,T411,1X,60A1)

>CALIB NQPT=40,CYCLE=40, TPRIOR, NORMAL,REFERENCE=1, NEWTON=20;
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