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The observed data are (y1, . . . ,yN ), the missing data are (θ1, . . . ,θN ), and the com-

plete data are [(y1,θ1), . . . , (yN ,θN )], where yi is the vector of item responses and θi

is the vector of unobserved latent variables (possibly multivariate) for randomly sampled

examinee i. Let the item parameters for item j be given by δj , and the collection of item

parameters for all K items by ∆ = [δ1, . . . , δj , . . . , δK ]. It is assumed the item parameters

for all items are known. The goal is to estimate the parameters (π) of the distribution

of the latent variables in the population of examinees [g(θ | π)] assuming the the item

parameters (∆) are known. Let sk(θ1, . . . ,θN ), k = 1, . . . ,m, be sufficient statistics for

the parameters π.

The EM algorithm consists of the E step in which the expected values of the missing

sufficient statistics [sk(θ1, . . . ,θN )] over the distribution of the missing data given the

observed data and provisional values of the parameters π are computed, and the M step

in which the expected values of the sufficient statistics computed in the E step are used

to compute complete data maximum likelihood estimates of the parameters (Dempster,

Laird, and Rubin, 1977). For computing estimates of π the E step at iteration s = 0, 1, . . .

consists of computing the k quantities

EΘ[sk(θ1, . . . ,θN ) | Y,∆,π(s)] , (1)

where Θ is the vector of latent random variables for the N examinees (these random

variables are independent and identically distributed), and the expectation is over the

conditional distribution of these random variables given the observed data and fixed known

values of the parameters (π(s) and ∆). Equation 1 can be written as

EΘ[sk(θ1, . . . ,θN ) | Y,∆,π(s)]

=
∫
θ1

. . .

∫
θN

sk(θ1, . . . ,θN )p[(θ1, . . . ,θN ) | Y,∆,π(s)]dθ1 . . . dθN

=
∫
θ1

. . .

∫
θN

sk(θ1, . . . ,θN )p1[θ1 | y1,∆,π(s)] . . . pN [θN | yN ,∆,π(s)] dθ1 . . . dθN . (2)
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Going from the second to the third line of Equation 2 follows from the fact that examinees

are independently sampled so that the latent random variables for the individual examinees

are mutually independent. Since (yi,θi) for i = 1, . . . N are identically distributed

pi[θi | yi,∆,π(s)] = p[θi | yi,∆,π(s)] . (3)

If sk(θ1, . . . ,θN ) can be written as

sk(θ1, . . . ,θN ) =
N∑
i=1

tk(θi) , (4)

then Equation 2 can be written as

N∑
i=1

∫
θ
tk(θ)p[θ | yi,∆,π(s)]dθ =

∫
θ
tk(θ)

{
N∑
i=1

p[θ | yi,∆,π(s)]

}
dθ (5)

Using Bayes Theorem, the distribution p[θ | y,∆,π(s)] is given by

p[θ | y,∆,π(s)] =
f(y | θ,∆)g(θ | π(s))∫

θ′ f(y | θ′,∆)g(θ′ | π(s))dθ′
. (6)

If it is assumed that the vector of latent random variables is multivariate normal

then the sufficient statistics are the sum of each latent variable, the sum of squares of each

latent variable, and the sum of cross products of pairs of the latent variables. Consequently,

the sufficient statistics can be expressed in the form of Equation 4, and Equation 5 can

be used for the E-step calculations of the sufficient statistics. The maximum likelihood

estimates of the parameters of the multivariate normal distribution are simple functions of

the sufficient statistics, so the M-step consists of simply calculating maximum likelihood

parameter estimates from the sufficient statistics calculated in the E-step. The solution

given by Mislevy (1984) when the latent distribution is multivariate normal is the same as

that given by Equation 5.
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