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Abstract

This paper proposed an item response model that incorporates response time. A
parameter estimation procedure using the EM algorithm was developed. The procedure was
programmed and evaluated with both real and simulated test data. The results suggest the
estimation procedure works well in estimating model parameters. By utilizing response time
data, estimation of person ability parameters can be improved. Potential applications of this

model are discussed. Directions for further study are suggested.
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In psychophysics and cognitive psychology, response time has long been a research
topic of interest. Psychologists who study response time are mainly interested in inferring the
organization of the mental process from the distribution of response time to different
components of the mental process (e.g., Luce, 1986). A general result from this research is the
well-known speed-accuracy trade-off function (SATF) which describes how a subject’s
accuracy to certain task changes as the response time changes (see Luce, 1986. P81; Roskam,
1997).

In educational measurement, however, the response time data has traditionally been
ignored in practice probably due to the fact that it was difficult to collect response time data at
the individual item level with paper-pencil testing. Computer-based testing makes response
time data at the item level readily available to measurement professionals. For this reason,
there has been an increased interest in response time in recent years. So far, existing research
has focused on modeling the distribution of response time and its relationship with other
variables such as item difficulty, examinee ability and test taking strategies (e.g., Thissen,
1983; Schnipke & Scrams, 1997; Segall, 1987; Parshall, Mittelholtz, & Miller, 1994; Scrams &
Schnipke, 1997; Swygert, 1998). Research has indicated a strong but complicated across-
examinee relationship between response time and response accuracy (See Schnipke & Scrams,
1998 for an overview of the literature). Generally, the relationship largely depends on context

and content of the test. All this research has treated response time as a dependent variable or



outcome variable and response accuracy and response time were not included in a single model
except in a few cases. Those few exceptions (e.g., Verhelst, Verstralen, & Jansen, 1997;
Roskam, 1997) are exclusively applied to speeded test because of the nature of their model
specifiction. For example, in Roskam’s (1997) model, the probability of a correct response to

an item is specified as:

&  expé+7-0)
O+e l+exp(é+7-0)

PU=1|t)= (1)

where 6 is the person ability, € is item difficulty, and ¢ is response time, and £, o and 7 are
the logarithms of @, £, and ¢. It can be seen that as 7 goes to infinite, P(U =1] t) will

approach one no matter how hard the item is. Therefore this type of model can only applied to
speeded tests because a basic assumption of speeded tests is that when time is unlimited, the
answers are always correct. In most educational assessment settings, tests are designed to be
power tests, which means that even given unlimited time, not every student will get a near
perfect score. Further more, even for power tests, there is usually a time limit for the test
administration. Even though that time limit is typically adequate for examinees in the middle
and upper ability range, the time limit still has an effect on examinee performance. A model is
needed that incorporates response time and can be applied to power tests.

The objectives of this paper are to (a) propose an item response model that incorporates
response time, which can be applied to power tests, (b) formulate an item parameter estimation
procedure for this model, (c) calibrate some real test data with this model and compare the
results with calibration under the 3PL model using BILOG, (d) use simulation techniques to
evaluate the item parameter estimation procedure, and (e) discuss its potential applications to

measurement settings, particularly to computerized adaptive testing (CAT).



A Item Response Model that incorporates Response Time
This paper develops a model that incorporates the response time into the usual 3
parameter logistic (3PL) model which can be applied to power tests. With this model, the

probability of correct response to item j by examinee i can be given as:

l-c,
P(xij :1|eppi’aj’bj’cj’dj’ttj): ¢+ 1+e—1.7a/[0[7(jp[d//zi/%b/] > )

Where a, b, c, and @ are usual IRT parameters, d is an item slowness parameter, ¢ is the

response time by this examinee on this particular item, p is an examinee slowness parameter,

and @ is the similar person ability parameter as in the regular 3PL model. These two slowness
parameters determine the rate of increase in correct answer probability as a result of increase in
response time. This model treats response time as only a conditional variable and does not
model how the examinee decides to spend a certain amount of time on a particular item. As
the time increases, the term in the exponent decreases with a marginally decreasing rate.
Because of the minus sign, this will effectively increase the overall term within the parenthesis
and consequently the probability of correct response. For lack of a better term, we will call this
model the four-parameter logistic response time (4PLRT) model because each item will have
four parameters.

Figure 1 provides some examples how the probability of correct response increases as
response time increases for some hypothetical items and examinees under this model. First of
all, these curves bear the common characteristics of the speed-accuracy trade-off function
(more precisely, the conditional accuracy function or sometimes called the micro speed-

accuracy tradeoff function in Luce, 1986, p. 245). Comparing the curves with all but one



parameters being the same can reveals how these parameters change the relationship between
response time and correct response probability. It can be seen that the larger the d and

p parameters, the slower the probability converges to its asymptote. For that reason, these two

parameters should be called the item slowness parameter and the person slowness parameter.
The top three curves all converge to the same asymptote because they all have the same

a(6 —b) term, whereas the bottom curve has a different asymptote because it is for a different

6 value.

Figure 1 also show the correct response probabilities do not converge to 1, but to some
values less than 1. Unlike the models developed for speeded tests (Verhelst, Verstralen, &
Jansen, 1997; Roskam, 1997), as response time goes to infinity, the overall term in the

exponent does not increase to infinity, but converges to a(e - b). This is achieved by putting a

negative term of the inverse of response time in the exponent of the logistic function rather
than a positive term of a increasing function of response time as did in the Verhelst, Verstralen,
& Jansen (1997) and the Roskam (1997) models. That means spending unlimited time does
not guarantee a correct answer. In this way, this model can be applied to the power tests.

The conventional 3PL model can be viewed as the limiting case of this model; that is,
the case there is no time limit for answering each item. Because in realistic testing situations
there is always a certain time limit, this model provides a more realistic description of the item
response mechanism than the 3PL model.

Like the 3PL model, this model also has some indeterminacy problems. In addition to
the indeterminacy of the @ scale as in the 3PL model which can be fixed in the same way as is

done for the 3PL model, there is another indeterminacy due to the product of p and d in the

term (pd /t). One way to fix the problem is to set the scale for one of the parameters p or d to



have a fixed mean and standard deviation (SD), and let the scale of the other parameter be
automatically tied to the scale of @ and the unit of ¢ (such as second or minute. Throughout
this paper, second is used as the unit of time).

This model has many potentially useful applications. One direct application is that it
may help estimate the item parameters for power tests with time limits. If the actual response
mechanism is close to what is described in this model, taking response time into consideration
in the item calibration process might even help estimate the regular item parameters a, b, and c.
A second potential application is that response time might be used to help infer examinee
ability (€). This can be used in computerized adaptive testing (CAT) to make the provisional
ability estimates converge faster to the true ability level, and thus reduce the number of items
administered and testing time. This model can also be used to make inferences about
examinees’ other characteristics such as if they can solve problems quickly as well as
accurately. It can also be used to study the optimal test taking strategy for tests with time
limits. Other potential applications of the model are to detect random guessing behavior and to
help deal with incomplete tests for the computerized adaptive testing situation. All these
potential uses need to be verified with simulated and real test data. The first step needed
before such research can be conducted is to develop a calibration program.

It should be noted that the model presented here is only a partial description of the test
taking process. A more complete description should include a model that models the
distribution of response time. With the distribution of response time, the joint distribution of
correct response and response time and the marginal distribution of correct response can be

derived. For the present, we focus on this partial model with response time being treated as a



conditional variable. Our main goal for this paper is to develop a calibration procedure for this

partial model.

Parameter Estimation for the 4PLRT Model
A parameter estimation procedure is developed using the EM algorithm as described in

Woodruff and Hanson (1996). Response time is treated as a fixed rather than a random
variable, like an independent variable in a regression model. Therefore, response time and
item responses are treated differently, with only the item responses considered as observed
realization of random variables in the observed and complete data likelihood. The EM
algorithm finds parameter estimates that maximize the likelihood of the observed data based on
a sequence of calculations that involve finding parameter estimates that maximize a conditional
expectation of the complete data likelihood. The difference between the EM procedure for this
model and that for the 3PL model is the two dimensional nature of the person parameter space.
The E-step will involve double integrals that take more computing time. Another major source
of increase in computing time is the aggregate statistics for items (usually noted as n, r) are not
available in the M-step with this model. The full description of the estimation procedure is
seen in the appendix. The procedure was programmed in the C++ language and evaluated with

both real and simulated test data.

Calibration and Evaluation of the 4PLRT Model with Real Test Data
A set of 20 ACT Mathematics items was administered to a group of 1161 examinees
via computers. The response data and response time data were input into the calibration

program. The response data were also input into BILOG discarding the response time data.



The resulting parameter estimates were tabulated in Table 1. The a, b and ¢ parameter
estimates from the two models were plotted against each other in Figure 2. Both Table 1 and
Figure 2 show the two models produced very similar @, b and c estimates. The correlations
between these pairs of estimates were found to be 0.940, 0.974 and 0.986 for a, b and c,
respectively. The fact that the ¢ parameter has stronger similarity than the a and b parameters
make sense because the ¢ parameter should be not affected by difference in the two models.

The d parameter estimates from the 4PLRT model vary considerably across items. The
relationship between this parameter and the other parameters was investigated by computing
their correlations. The correlations between the d parameter and a, b and ¢ are found to be
0.484, 0.339 and -.2166, respectively. These correlations suggest that more discriminating and
more difficult items takes more time to converge to their asymptotic correct answer

probabilities. These results should be replicated with more real test data in future studies.

Evaluation of the Estimation Procedure with Simulations

Method
The model and the estimation procedure developed in this paper are evaluated using
simulated data. To simulate the response time, Thissen’s (1983) model for response time was

used. The model is described as

log(ty.)z V+s, +u, —gz, +€;
g, ~ N(0,0?) 3)

where,zij =a, (9i _bj)



v is the overall mean, s is a person slowness parameter, u is item slowness parameter, g is the
log-linear relationship between response time and examinee ability. The generated response
time data are used to generate the item response data using Equation 2 along with the examinee
true ability parameters that are generated from a standard normal distribution. For this initial
stage, we only examined a special case of the model; that is, we fixed the person slowness
parameter in Equation 2 as constant and only let the item slowness parameter vary (from a
uniform distribution from 0 to 10). The true a, b, and ¢ parameters were taken from another set
of ACT Mathematics item parameters.

Two different test lengths (20 items and 60 items) and three sample sizes (1000, 2000,
and 4000) were used in this simulation. The summary statistics of the true item parameters for
these two sets of items are in Table 2. The simulated data were generated and calibrated 100
times for each of the six conditions. The bias, standard error (SE) and root mean square error
(RMSE) were computed for each item parameter across 100 replications. The means and
standard deviation (SD) of these error indices were computed across items. (For bias, the
means of the absolute values were computed). The correlations between the true and estimated
item parameters were also computed for each item parameter for each replication. The means
and SD of these correlations across replications were computed.

To study the effect of ignoring response time when response time does have an effect
on examinee performance, we also calibrated a sample response data with a regular 3PL model
using BILOG. By comparing these a, b, and ¢ parameters to the true parameters and the
estimated parameters with the response time model, we can study the effect of omitting

response time in the calibration.
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Preliminary Analysis of the Simulation Model

In order to examine how the different components in Equation 3 affect the calibration
of the model, we experimented with some different variations of Thissen’s model. The issue of
using different variations first arose when we discovered that when the full model in Equation
3 is used to generated the response time, the d parameters in Equation 1 can not be properly
estimated.

The true and estimated parameters under different condition were contained in Table 3.
It is interesting to see that the way the response time was generated had a major effect on the
parameter estimates, particularly for the item slowness parameter, d. When Thissen’s model
was implemented with all the terms inside, the d parameters all shrink to near zero and the a
and b parameter estimates were also negatively affected. When the z term was dropped from
Equation 2, then all the parameter estimates were quite accurate. We hypothesize that it is
because with the z term in Equation 2, response time is negatively (because of the minus sign)

correlated with the term a(6 —b) in Equation 2 (whether this is a realistic situation needs more

empirical verification, current literature does not strongly support this correlation), which
causes some identifiability problems. By deleting the z term in Equation 3, the response time
is basically not correlated with examinee ability and item difficulty. This result seems to
indicate that the model parameters can be accurately estimated only when the response time is

not correlated with a(@ —b), although the final conclusion needs to be verified with more data.

Results from the Simulation Study

Table 4 contains the aggregate error indices for each of the item parameters. Note the

magnitude of these values should be interpreted in accord with the scale of the parameters. For
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example, a smaller value for the ¢ parameter than for the d parameter does not necessarily
mean the ¢ parameter is better estimated than the d parameter. Overall, these error indices
seem to suggest that the parameters are reasonably well estimated. Increasing the sample size
consistently results in smaller errors. Increases in the test length also consistently reduce SE
and RMSE, but not always bias.

Table 5 contains the average correlation values between the estimated and true item
parameters averaged across replications. Note that the values of correlation reflect SE more
than the bias. Again, the correlations indicate these item parameters were well estimated,
particularly for the b and the d parameters. The effects of test length and sample size are
consistent with those seen in the error indices.

Figure 3 plots the estimated and true person parameters for a sample of 2000 simulees
taking the 60-item test estimated under both the 3PL (BILOG) and the 4PLRT model. The
correlation between the 3PL and the true @ s 1s .884, whereas the correlation between the
4PLRT @ estimates and the true s is .937. This increase in correlation by using the 4PLRT
model rather than the 3PL model suggests that if in fact the 4PLRT model is true (i.e., response
time plays a role), incorporating response time in estimating € will result in more precision.

Figure 3 also shows that the person slowness parameters p s are not as well estimated as
@s. The correlation between the estimated p s and true p s is .649. The reason why this

parameter is not well estiamted should be further investigated.

Conclusion and Discussions

The 4PLRT model proposed in this paper utilizes an important source of data in

educational measurement made available by computerized testing; namely the response time.
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The advantage of this model relative to models presented in the existing literature is that it can
be applied to power tests.

This paper developed a parameter estimation procedure for the 4PLRT model and
evaluated it with both real and simulated test data. The results showed that the estimation
procedure works well and produced reasonably accurate parameter estimates. With the real
test data, the a, b and ¢ parameter estimates from the 4PLRT model are very similar to those
from the 3PL model calibrated with BILOG. The item slowness parameters seem to have
strong correlation with the discrimination and difficulty parameters. Results based on
simulated data show that if the response time affects the correct answer probability, ignoring
response time data will have an adverse effect in estimating examinee ability.

In summary, these results give clear indication that this model provides promising
capabilities in utilizing the response time data. As discussed previously, this model can be
used to enhance measurement quality and handle many complicated issues otherwise difficult
to handle, particularly in computerized adaptive testing settings. With the ever-increasing
popularity of the computer-based testing, it is almost certain that there will be more and more
need to utilize response time data to improve measurement quality. Future studies should
apply this model to additional real test data and investigate how much can be gained in
incorporating response time in the model.

In addition to helping estimate the person ability parameters, utilizing response time
data with the 4PLRT model also renders it possible to make inferences about another important
dimension of person characteristics: namely the slowness in problem solving. It may be

debatable whether and how this information about persons should be used in various
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educational settings may be an entirely different set of questions, but it is good to know that

this information can be obtained.
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Appendix
This appendix describes an application of the EM algorithm as described in Woodruff and
Hanson (1996) to compute parameter estimates of the 4PLRT model for dichotomous items.
M odel

The probability of acorrect responseto item j for arandomly sampled examinee with ability

and speed parameters 6; and p; is given by the 4PLRT model as

1- Cj
1+ e 1780 —(oidi /tij)—by]

P, pi | tij, ) =¢ + (AD

where 6; = (g, bj, ¢j, d;) areitem parameters for item j, and t;; is the amount of time examinee
I takesto respond to item j. The values 6; and p; are redlizations of latent random variables that
determine the probability of examineei answering item j correctly. The latent variable associated
with 6; will be called the ability latent variable, and the latent variable associated with p; will be
called the speed latent varible.

In this paper the latent variables are assumed to be discrete. It is assumed that 6, can be
one of K known discrete values g, k = 1,..., K, and that p; can take on L known discrete
vauesu;,l = 1,..., L. The probability that a randomly chosen examinee isin category k of the
ability latent variable and in category | of the speed latent variableis . With this assumption the
joint distribution of the latent variables has a multinomial distribution with probabilities ry, k =
1,...,K,I =1,...,L (the set of al my isdenoted 7). The notational convention used in this
paper isthat g, k = 1,2,..., K and u;,| = 1,..., L arethe possible values of the two latent
variables, whereas 6, and p, are unspecified values of the latent variables for examineei which can

equal any of the gx and u;.

Data

The model treats response times as fixed rather than random, like an independent variablein a
regression model. Therefore, response times and item responses are treated differently, with only
item responses considered observed realizations of random variables in the observed and complete
data likelihoods.

Observed Data. The observed data are the responses of asampleof N examineesto J dichotomous

items. Theitem responsesare containedinaN x J matrix Y, whereY = (y1, ¥, ..., yn)', Yi isa
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vector given by (i1, Vi, ..., ¥i3), and y;j isoneif examineei answered item j correctly, and zero

if examineei answered item j incorrectly.

Missing Data. The missing data are values of the unobserved ability and speed latent variables for
each examinee. Themissing dataare @ = (61, 62, ..., 60n) and p = (p1, p2, ..., pn), Where6; and

pi arethe values of the ability and speed latent variables for examineei.

Complete Data. The complete data are the observed data plus the missing data for each examinee.
The complete dataare [(y1, 61, p1), (Y2, 02, 02), - - ., (YN, ONs NI

Response Times. The time examinee i took to respond to item j istjj. The times that examineei
took torespondto al theitemsaret; = (i1, ti2, ... ti3). The N x J matrix containing the response

times for all examineesto al itemsisT = (tq, to, ..., ty)h.

EM Algorithm

The EM algorithm can be used to find parameter estimates that maximize the likelihood of
the observed data based on a sequence of calculations that involve finding parameter estimates that
maximize a conditional expectation of the complete data likelihood. To simplify the computations
maximum likelihood estimates will be found for the conditional observed likelihood of the item
responses given the response times. Parameter estimateswill be found that maximize thefollowing

observed data likelihood (conditional on response times):

N /K L J
LY [T, A, m =1_[ (ZZJTKI 1_[ P(ak, ur | tij, 6)% [1— P(qk, uy Itij,5j)]1—yu> (A2)

i=1 \k=1 I=1 =

[N

where A isthe set of item parametersfor al items (9;, j =1..., J).
The corresponding likelihood for the complete data conditional on response timesis:

N J
L(Y,0,p 1T, A, m =[][[P@. pi | tij, )" [1=P @, pi | tij, )1 £ 61, pi | ™), (A3
i=1j=1

where (6, pi | w) = my if 6, = gx and p; = u;. Thelog-likelihood corresponding to Equation
A3is

log[L(Y,0,p|T, A, )]
N
:Z (yij log[P (&, pi | tij, 8))] + (1L —Vij)log[l— P&, pi | tij, 6;))] + log[ f (6, pi |7T)]>
i—1

| j:l
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J N
=2 D _ijloglP(@. pi | tj. )] + (1= yij) logl1 — P(@. i | tj. 6))]}

._
Il
1N
I
AN

N
+Y loglf @, pi [M]. (A4

i=1
The computations to be performed in the E and M steps of the EM algorithm are described in

the next two sections.

E Step
The E step at iteration s (s = 0, 1, ...) consists of computing the expected value of the log-
likelihood given in Equation A4 over the conditional distribution of the missing data (8, p) given
the observed data (Y), fixed values of the response times (T), and fixed values of the parameters
A® and 7r® obtained in the M step of iteration s — 1 (starting values for the parameters are used
for A© and 7©@). The expected complete data log-likelihood is given by (Woodruff and Hanson,

1996):
¢ (A) + Y () (AS)

J N K L
$A)=D > > > IiloglP(ak. ur | tij. 6]+
(1 —yip log[l — P(ak, u | tij, )1} f(ak, u | yi, ti, A®, 7®)  (AB)

and
N K L
Y(m) = ZZZ'OQ[f(ei, o | 1@ | yiti, A9, w9). (A7)

i=1 k=1 1=1
The conditional probability of the ability latent variable being equal to g« and the speed latent

variable being equal to u; for examineei given observed item responsesy;, observed responsetimes
t; and parameter values of A© and 7@ is (Woodruff and Hanson, 1996):
f(yi | Q. U, ti, A®)mS
S h ey F i | G un, b, AT
B ¢ TTj—1 PG r | tij, 6)M [1— P(a, Ui | ti, 6]
R i e Ty P ur | 6. 80 [1 = P(ge up [ G, 8]
The E step consists of computing the conditional probabilitiesin Equation A8 which are used

f(au |y, ti, A®, 79) =

(A8)

to compute the derivatives of ¢ (A) and v (7) inthe M step.
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M Step

Estimates of = and A can be computed independently in the M step by finding values of A

and 7 that separately maximize ¢ (A) and v (). The values of 7" computed inthe M step at
iteration s are (Equation 30 of Woodruff and Hanson (1996):
(s+1) N
et = K- (A9)
where \
ne =Y f @ ur | yi.ti, A9, 7). (A10)

i—1
and (g, U | Vi, ti, A®, ) isgiven by Equation A9.

Thevalues of 5j(s+l) computed inthe M step at iteration s are the solution of the system of four

eguations:
19(8) _
3aj
Ip(A)
ab, 0
19(8) _,
3Cj
8?;?) =0. (Al11)

using f (o, ur | Vi, ti, A®, ®) computed in the E step at iteration s.
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Table 1. Item Parameter Estimates for 20 ACT Math Items Calibrated using the 4PLRT and the 3PL Models.

4PLRT Model 3PL Model (BILOG)

Item a b c d a b c
1 1.0585 -0.7920 0.1724 1.9075 1.0036 -0.8069 0.1690
2 1.1757 -0.6201 0.2689 0.7682 1.0650 -0.6823 0.2512
3 1.0189 -0.6134 0.1694 1.4534 0.9497 -0.6262 0.1670
4 1.3573 -0.3716 0.1462 0.2889 1.2234 -0.4153 0.1402
5 1.0150 -0.0644 0.2576 0.0690 0.9407 -0.0740 0.2582
6 0.6996 -0.8598 0.1720 0.1321 0.6576 -0.9220 0.1707
7 0.8727 -0.0798 0.2039 0.3678 0.8279 -0.0498 0.2167
8 1.2477 -0.8789 0.0890 9.9204 0.9844 -0.4775 0.0840
9 1.7428 -0.6523 0.1126 9.9083 1.5805 -0.3800 0.1270

10 1.3443 -0.4211 0.1322 9.8975 1.2155 -0.2329 0.1133
11 0.8154 -0.1078 0.1665 3.8295 0.7860 -0.0166 0.1727
12 1.3032 0.3069 0.3262 9.8315 1.3716 0.6902 0.3535
13 1.4892 1.0953 0.3532 9.2318 1.2027 1.3073 0.3394
14 1.4821 0.7874 0.2354 6.7653 1.5569 1.0731 0.2452
15 1.2934 0.3104 0.2965 9.7058 1.2431 0.5828 0.3037
16 0.6530 0.2333 0.0931 9.9003 0.6453 0.6130 0.1109
17 1.8339 0.1447 0.0548 9.9611 1.4352 0.5050 0.0581
18 0.7671 0.2343 0.0840 9.5824 0.8156 0.5783 0.1184
19 1.7604 0.4114 0.1168 9.8686 1.7798 0.7100 0.1336
20 0.8772 0.8415 0.2301 1.9538 0.9110 0.9621 0.2482




Table 2. Descriptive Statistics for the True Item Parameters Used in the Simulation Study.

20-Item Test a b c d
Mean 1.0208 0.3844 0.1580 5.3603
Median 0.9430 0.3730 0.1660 5.8435
Standard Deviation 0.2746 1.0139 0.0537 3.0369
Kurtosis -0.2001 -0.4648 -0.9133 -1.0680
Skewness 0.6507 -0.2669 -0.4176 -0.3811
Minimum 0.6280 -1.4930 0.0580 0.1400
Maximum 1.6510 2.1990 0.2300 9.4960
60-ltem Test
Mean 1.0352 0.3243 0.1485 4.6711
Median 0.9965 0.2725 0.1535 4.6415
Standard Deviation 0.2583 0.9317 0.0494 2.9019
Kurtosis -0.7320 -0.5126 -0.8017 -1.1416
Skewness 0.3929 -0.2652 -0.0559 0.1330
Minimum 0.6280 -1.8160 0.0580 0.1400

Maximum 1.6510 2.1990 0.2510 9.7980




Table 3. The True and Estimated Item Parameters for Different Response Time Data and Model.

True item parameters
Item a

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

0.717
0.826
0.929
0.707
1.040
1.651
1.148
0.920
0.628
1.084
0.957
0.911
1135
1411
1.373
0.779
0.741
1.333
1.250
0.875

b c
-1.493 0.159
-1.364 0.173
-1.175 0.156
-0.156 0.211
-0.087 0.227
-0.223 0.065
0.047 0.183
-0.116 0.223
-0.045 0.212
0.498 0.184
0.289 0.135
1.356 0.097
1.096 0.230
0.457 0.058
1.186 0.094
1.107 0.189
1.026 0.121
1.370 0.192
1.715 0.107
2.199 0.144

With z term

d a

7.055]| 0.737
5.795] 0.677
3.019] 0.783
0.140] 0.737
8.145] 0.808
0.454] 1.935
8.626| 1.073
3.735] 0.763
8.714| 0.564
9.496| 1.011
5.249] 0.952
0.535] 0.911
4.687| 0.627
6.227| 1.259
2.638| 1.481
8.298| 0.479
5.892| 0.858
9.110] 1.146
6.951| 1.212
2439 1.242

b c
-0.709 0.168
-0.773 0.176
-0.916 0.184
0.001 0.277
0.521 0.188
-0.106 0.110
0.884 0.193
0.124 0.174
1.083 0.234
1.508 0.203
0.706 0.120
1.490 0.103
1.733 0.195
1.050 0.066
1.373 0.089
1573 0.128
1554 0.164
1.931 0.149
2.343 0.121
2.283 0.178

Without z term

d a

0.073] 0.823
0.049] 0.720
0.053| 0.832
0.081| 0.853
0.091]| 1.107
0.020 | 1.846
0.069| 1.111
0.091| 0.897
0.192| 0.737
0.326 | 1.422
0.096 | 1.059
0.109 | 1.005
0.353| 1.071
0.046 | 1.505
0.072| 1.536
4.252| 0.495
0.258 | 0.820
0.986 | 1.451
0.374| 1.462
0.804 | 1.062

b c
-1.225 0.167
-1.305 0.154
-1.090 0.151
0.188 0.337
-0.047 0.215
-0.238 0.101
0.251 0.177
-0.272 0.196
0.037 0.241
0.380 0.206
0.078 0.113
1457 0.112
1.052 0.240
0.462 0.075
1.314 0.086
1.073 0.130
1.199 0.152
0.907 0.156
1961 0.114
2.071 0.172

Regular 3PL model

d a

5.450| 0.803
4.857| 0.707
2.358| 0.835
0.085] 0.839
6.957| 1.019
1.025| 1.795
7.435] 1.072
4.959| 0.836
8.716 | 0.663
9.871| 0.959
6.595| 0.921
0.282] 0.938
6.125| 0.768
6.538 | 1.297
1.437| 1.417
9.795| 0.492
5.815| 0.817
9.689| 0.844
4.085| 1.174
3.916 | 0.986

b c
-0.493 0.156
-0.571 0.158
-0.773 0.156
0.178 0.331
0.879 0.210
-0.099 0.098
1.237 0.184
0.300 0.181
1414 0.227
1.994 0.197
0.937 0.098
1521 0.107
2.055 0.218
1.343 0.067
1.563 0.084
2472 0.146
1.951 0.156
2.648 0.143
2.633 0.112
2.680 0.170




Table 4. The Across-ltem Means and SDs (in parentheses) for Absolute Bias , SE, and RMSE of the Item Parameter Estimates

N a b C d

Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE
20-Item Test
1,000 0.1256 0.3295 0.3556 0.0290 0.1702 0.1747 0.0115 0.0285 0.0324 0.6877 1.3588 1.5671
(0.1062) (0.2983) (0.3132) (0.0233) (0.0716) (0.07) (0.0144) (0.0108) (0.0144) (0.6298) (0.7095) (0.8696)
2,000 0.0629 0.1827 0.1957 0.0273 0.1246 0.1301 0.0073 0.0235 0.0257 0.7100 1.0465 1.2945
(0.0601) (0.116) (0.1267) (0.0217) (0.048) (0.0457) (0.0101) (0.0104) (0.0123) (0.5303) (0.6231) (0.7675)
4,000 0.0322 0.1215 0.1269 0.0226 0.0909 0.0952 0.0058 0.0189 0.0205 0.6291 0.7498 1.0080
(0.0261) (0.0584) (0.0614) (0.0161) (0.0322) (0.0314) (0.0073) (0.0106) (0.0117) (0.4785) (0.4452) (0.6049)
60-Item Test

1,000 0.0816 0.1982 0.2169 0.0411 0.1395 0.1485 0.0112 0.0264 0.0301 0.4525 1.0644 1.1904
(0.0593) (0.1199) (0.1296) (0.0255) (0.0406) (0.037) (0.0118) (0.0094) (0.012) (0.4317) (0.5348) (0.6257)
2,000 0.0365 0.1306 0.1366 0.0394 0.1040 0.1133 0.0077 0.0222 0.0242 0.4088 0.7668 0.8915
(0.0246) (0.0648) (0.0673) (0.0195) (0.0298) (0.028) (0.0087) (0.0098) (0.0116) (0.3374) (0.4164) (0.4968)
4,000 0.0205 0.0902 0.0932 0.0309 0.0766 0.0839 0.0054 0.0171 0.0184 0.4284 0.5391 0.7053
(0.0142) (0.0392) (0.04) (0.0143) (0.0241) (0.0238) (0.0071) (0.0092) (0.0109) (0.3044) (0.3032) (0.401)




Table 5. The Across-Replication Means and SDs (in parentheses) for
Correlations Between Estimated and True Item Parameters.

N a b c d
20-1tem Test

1,000 0.7218 0.9862 0.8101 0.8467
(0.1453) (0.0086) (0.0699) (0.0752)

2,000 0.8530 0.9923 0.8743 0.9012
(0.0695) (0.0043) (0.0492) (0.0521)

4,000 0.9170 0.9959 0.9151 0.9508
(0.0365) (0.0017) (0.038) (0.025)

60-1tem Test

1,000 0.7988 0.9883 0.8224 0.9027
(0.0564) (0.0027) (0.0369) (0.0297)

2,000 0.8878 0.9937 0.8766 0.9478
(0.0319) (0.0014) (0.0286) (0.0144)

4,000 0.9395 0.9965 0.9184 0.9733
(0.0145) (0.0008) (0.0242) (0.0067)
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Figure 1. Relationship between Response Time and Probability of Correct Response under the 4PLRT Model.
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Figure 2. Item parameter estiamtes from the 4PLRT model versus the BILOG estimates for the Math items.




4— 4 —
2 - 2 -
o
- :
F
0 — = 0
= a
<t —
[}
. on
24 2 -
-4 I I I | -4 I I I
4 2 0 2 4 4 2 0 2
True O True O
25—
2.0 —
[N
E
o
—
[a )
<t
0.0 I I I I |
00 05 10 15 20 25

True p

Figure 3. Plots of estimated and true person parameters.
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