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Abstract

The requirement of large sample sizes for calibrating items based on IRT models is not easily met in 

many practical pretesting situations.  Although classical item statistics could be estimated with much 

smaller samples, the values may not be comparable across different groups of examinees.  This study 

extended Chang, Hanson, and Harris (2000) by further exploring the standardization method and comparing 

its effectiveness with the one-parameter (1PL) and three-parameter (3PL) logistic IRT models in adjusting 

pretest item statistics with small sample sizes, using more realistic data than the previous study.

Based on the realistic data generated from a 50-dimensional MIRT model, the 3PL model performed 

better than the 1PL or standardization method in recovering both the population p-values and point biserial 

correlations.  The standardization method outperformed the 1PL model in recovering the population point 

biserial correlations, but not in recovering the population p-values.  The performance of the methods was 

also evaluated using the real pretest data of a high-stakes test.  In terms of recovering the p-values and point 

biserial correlations for the real data, the 1PL model produced the most satisfactory results.  The 3PL model 

performed worst in terms of recovering the p-values for the real data, and the standardization method 

performed worst in recovering the point biserial correlations for the real data.

Due to the very limited number of conditions studied, one must be cautious about making 

conclusions about the standardization method relative to IRT methods based on these studies.  The 

standardization method appears to be a viable alternative to IRT methods that may be simpler to implement, 

although these results do not suggest that it will produce more accurate results.
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When a large number of items are to be pretested, but concerns about test security prevent all 

pretest items from being administered to the same group of examinees, the pretest items can be included 

in parallel forms and be administered to different small groups of examinees.  The groups used for 

pretesting could be conveniently formed based on school and concerns about item exposure may 

preclude the administration of different forms to the same school using a spiraling process.  If the groups 

taking the different forms represent samples from different schools, then the groups are nonequivalent.

Based on specific groups of examinees that are administered the test, classical item statistics such 

as item difficulty (i.e., the p-value) and the item discrimination (i.e., the biserial or point biserial 

correlation) are computed.  A sample size of 150 to 200 examinees is usually sufficient to obtain stable 

estimates of these statistics.  However, the classical item statistics based on nonequivalent groups are not 

directly comparable, posing a problem in the test development process.  Instead of directly computing 

classical item statistics, item parameters of IRT models can be estimated using the response data.  These 

parameters in each group can be converted to be on the same scale using IRT scaling or transformation 

methods.  Estimates of the classical item statistics for all items in a particular group can be computed 

using the IRT parameter estimates.

The Rasch model, or the one-parameter logistic (1PL) model, specifies that the item difficulty is 

the only item characteristic that varies from item to item, holding the item discrimination values equal 

for all items.  Previous research suggested that a sample size of as small as 200 examinees would be 

sufficient to accurately estimate item parameters of the 1PL model (Wright & Stone, 1979).  However, 

the 1PL model may not provide a good fit to multiple-choice items where discrimination indices are 

usually unequal, and examinees are likely to guess on the items.  The three-parameter logistic (3PL) 

model (Birnbaum, 1968) is a more general model where the discriminating power is allowed to vary 

among items and guessing is allowed to occur for the examinees.  However, in order to accurately 

estimate the 3PL item parameters, previous research suggests that at least 1,000 (Reckase, 1979; Skaggs 

& Lissitz, 1986) to 10,000 (Thissen & Wainer, 1982) examinees would be needed.  The requirement of 

large sample sizes in practical pretesting situations can be hard to meet.

As an alternative to IRT item calibration with small sample sizes, Chang, Hanson and Harris 

(2000) proposed a standardization approach to adjust conventional item statistics obtained from small 

nonequivalent samples to more closely represent the item statistics that would have been obtained if the 

population of interest has been employed.  This method is implemented by incorporating a set of 

common items across the various forms of a test and assuming that the conditional distributions of 

unique or noncommon items given the number correct score on the common items are the same across 

all groups of examinees.  A joint distribution of a unique item score and the number correct score on the 

common items (common item score) in the total group of examinees can then be obtained.  An estimate 
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of the classical p-value in the entire population (i.e., the average probability of correctly answering an 

item in the total group of examinees) can be obtained from the joint distribution by summing over the 

common item scores for the correct unique item response.  The point biserial correlation between the 

unique item score and common item score can also be obtained from this joint distribution.

In order to understand the standardization method, let Ug and Xcg be random variables 

representing the score on a unique item and the number correct score on a set of m common items, 

respectively, in examinee subpopulation g.  The joint distribution of the unique item and common item 

scores in the subpopulation g can be written as

Pr(Ug=u, Xcg=x) = Pr(Ug=u|Xcg=x) Pr(Xcg=x), g = 1,...,G; u = 0, 1; x = 0, 1,...,m,

     = 0, elsewhere.

The notation of Ug = u represents the event of the random variable Ug taking on the value of u, 

with the value of 1 for a correct response and 0 for an incorrect response in the subpopulation g, and Xcg 

= x represents the the event of the random variable Xcg being equal to number correct score x in the 

subpopulation g, with the values of 0 to the number of common items, m.  Pr(Ug=u|Xcg=x) is the 

conditional distribution of the unique item score given common item score and Pr(Xcg=x) is the 

marginal distribution of the common item score in the subpopulation g.

For the entire population o (i.e., the examinees across all subpopulations), the joint distribution 

of the unique item and common item scores can be represented as

Pr(Uo=u, Xco=x) = Pr(Uo=u|Xco=x) Pr(Xco=x), u = 0, 1; x = 0, 1,..., m,

     = 0, elsewhere.

Based on the assumption that the conditional distributions of the unique item response given common 

item score are the same across all groups, the above joint distribution can be written as

Pr(Uo=u, Xco=x) = Pr(Ug=u|Xcg=x) Pr(Xco=x) for any subpopulation, g,

where Pr(Xco=x), the distribution of the common item scores for the entire population o, is estimated 

based on the responses of all groups to the set of common items.  Using this joint distribution inthe 

entire population, estimates of classical item statistics that would have been obtained if the item had 

been given to a sample from the entire population can be calculated.  An estimate of the classical p-value 

in the entire population (i.e., the average probability of correctly answering an item in the population of 
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examinees) can be obtained from the joint distribution Pr(Uo=u, Xco=x) by summing over the common 

item scores for the correct unique item response.  The point biserial correlation between the unique item 

score and common item score can also be obtained from this joint distribution of the unique item and 

common item scores in the population of examinees.

Random error in this standardization method can be reduced using smoothing methods.  A 

bivariate polynomial log-linear model analogous to that described in Hanson (1991) and Rosenbaum and 

Thayer (1987) can be employed to smooth the joint distribution of the unique and common items 

Pr(Ug=u, Xcg=x).  The marginal distribution of the common items Pr(Xco=x) can be smoothed using a 

univariate polynomial log-linear model described in Kolen (1991).

Chang et al. (2000) showed that both the standardization and the 3PL methods outperformed the 

1PL model in recovering the population p-values and point biserial correlations.  In estimating the 

population p-values, the performance of the standardization method was similar to that of the 3PL model.  

In estimating the point biserial correlations, the standardization method performed slightly worse than 

the 3PL model.  However, the results in Chang et al. (2000) were based on data generated using a 3PL 

model with a sample size of 250 examinees in each group.  When the data do not perfectly fit a 3PL 

model, the relative performance of the standardization method and the 3PL model may differ.  The 3PL 

model-genertated data might have created a bias in favor of the 3PL model.  Also, while the classical 

item statistics might be stable based on samples as small as of 150 to 200 examinees and the 

standardization method might still satisfactorily recover the population item statistics, parameter 

estimation based on the 3PL model may not be justified on so small a sample and its performance could 

deteriorate.  The current study was intended to investigate the comparative performance of the 

standardization method and both the 1PL and 3PL models with a realsitic data set simulated using a high 

dimensional MIRT model (Davey, Nering & Thompson, 1997).  In addition to the sample size of 250 

examinees in each group, a condition of 100 examinees in each group was also used to represent a 

situation where the group size was very small.  The three methods were also applied to a real pretest data 

set.

The Purpose

This study was designed to compare the effectiveness of the standardization method (Chang et al., 

2000) with IRT methods for scaling pretest item statistics to be on the same scale using both realistically 

simulated data and real pretest data.  This study was concerned with the case in which pretest item 

statistics were obtained using a common item nonequivalent groups design.  When the sample sizes for 

the groups of examinees are small, employing traditional IRT item calibration or scaling may not be 

justified due to the large sample size requirement.  This study examined the standardization method of 
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adjusting conventional item statistics which may have a less strict sample size requirement.  Specifically, 

this study attempted to achieve the following objectives:

1. to explore the standardization method using realistic simulated data sets;

2. to compare the item statistics recovery of the 1PL model, the 3PL model and the standardization 

method with sample sizes as small as 100 and 250.

Method and Data

The first part of this research evaluated the performance of the methods using realistic data 

simulated from a MIRT model.  The second part of this research studied the performance of the methods 

using real pretest data.  The plan of the study design, preparation of the data, and methods for data 

analyses for the two parts of this study are described in separate sections below.

I.  The Simulation Study

The Test Forms

Ten test forms were built to be as parallel as possible in their content and statistical specifications.  

Each form consisted of 24 unique items and 12 common items.  Item parameters calibrated from 

multiple forms of a large scale standardized math test based on a 50-dimensional MIRT model (Davey et 

al., 1997) using NOHARM (Fraser, 1986) were available for this study.  For the purpose of this study ten 

test forms were created based on these item parameters using the following steps:

1. A 50-dimensional normal ogive MIRT model was fit to a large number of the examinee responses for 

several forms of the math test using NOHARM to obtain for each item a set of 50 a-parameters, one 

b-parameter, and one c-parameter.

2. 10,000 examinee responses to all items available were generated based on the 50-dimensional model 

using the item parameters obtained from step 1.  When generating response data from the 

multidimensional model, the theta vector for each examinee was generated from a 50-variate N(0, I) 

distribution of ability (i.e., a standard multivariate normal distribution with a mean vector of zero and 

an identity covariance matrix).

3. Using the10,000 examinee responses generated in step 2, the p-value and the correlation between the 

item and the total score on all items (i.e., the point biserial correlation) were computed for each item.

4. Based on the content categories and the p-values and point biserial correlations of the items 

computed in step 3, ten forms each containing 36 items were created to be as parallel as possible.  

However, the degree of the parallelism may be somewhat limited due to the number of appropriate 

items available.  In each form, the 24 unique items were followed by the 12 common items.

By following the steps above, the forms were built based on the model to be used to generate the 
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response data of the various examinee groups for the current study.  The item parameters of the 50 

dimensional MIRT model estimated from NOHARM were treated as the population item parameters.

The Samples and Population

Ten groups of examinees were generated with sample sizes of 1,000 and 2,500 examinees across 

all groups (approximately 100 and 250 examinees per group), respectively, to represent a situation where 

the group size was small.  Examinee abilities were generated from a 50 dimensional standard 

multivariate normal distribution.  Also, responses to items on an additional form of the math test were 

generated for each examinee.  This form contained items that were different from any of the items used 

for unique or common items.  This form will be referred to as the assignment form.  These generated 

math scores were used for assigning examinees to the ten groups.  The score on the assignment form was 

used to assign examinees to groups due to the difficulty in specifying group differences in terms of the 

entire 50 dimensional vector of examinee abilities.  The rules for assigning examinees to the various 

groups were constructed so that examinees with lower scores were more likely to be assigned to the 

lower examinee group than examinees with higher scores, and the group differences were similar in 

magnitude to group differences observed with the real pretest data in this study.

In order to obtain group differences that were comparable to those in the real pretest data, some 

trial and error was needed.  The first step was to find the quartiles (25th, 50th, 75th percentiles) of the 

number correct score distribution of the assignment form.  The second step was to make and adjust the 

conditional probabilities of examinees being assigned to each group given an examinee's score of the 

assignment form was in the 1st, 2nd, 3rd, or 4th quartile of the distribution in order to produce group 

differences comparable to those in the real data.  Third, the examinees were assigned to the various 

groups based on the conditional probabilities.  The conditional probabilities for each quantile of the 

assignment form score used to assign examinees to groups are given in Table 1.  Table 2 gives 

descriptive statistics of the scores on the 12 common items for 10,000 simulated examinees, who were 

assigned to groups based on the conditional probabilities presented in Table 1.  The number in each 

group was not exactly 100 or 250 because the group was randomly determined based on the number 

correct score for the assignment form, and also, due to the fact that the quartiles did not exactly separate 

the raw score distribution of the assignment form into four even parts.  The total sample size across all 

groups is always equal to 1,000 or 2,500.  The assignment rule adopted for this study yielded group 

differences that were fairly close to those in the real pretest data set.  The population ability distribution 

across all groups was a standard multivariate normal distribution.

Once an examinee was assigned to a group, item responses to the unique items in that group and 

the common items were generated using the population MIRT item parameters and the generated 50 
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dimensional ability vector for the examinee.

The Population Item Statistics

The population conventional item statistics (both the p-values and point biserial correlations) 

were obtained based on the population item parameters and the population ability distribution.  The 

population p-value of an item was computed by evaluating the integral p = ∫ Pr(U=1|θ) fo(θ)dθ, where 

Pr(U=1|θ) is the conditional probability of the correct item response given a particular θ value and fo(θ) 

is the ability distribution of the overall population.  Monte Carlo numerical integration with 500,000 

replications was used to evaluate the 50 dimensional integral.  Since the various forms of the test 

consisted of different unique items and a set of common items, the population point biserial correlation 

was defined in this study as the correlation between the unique item score and common item score 

instead of the total test score.  This correlation was computed based on the joint distribution of the 

unique item and the common items in the overall population.  The Monte Carlo numerical integration for 

evaluating the 50 dimensional integral was employed in computing the population point biserial 

correlations.

The Estimated Item Statistics

The estimated p-values and point biserial correlations were obtained using the 1PL model, the 

3PL model and the standardization method, respectively.  For both the 1PL and 3PL models, BILOG-

MG (Zimowski, Muraki, Mislevy, & Bock, 1996) was utilized first to estimate the item parameters for 

all unique and common items simultaneously using multiple group estimation.  Then, these item 

parameters were converted to the conventional p-values and point biserial correlations.  The p-value was 

computed by evaluating the integral

$p  = ∫ $Pr (U=1|θ) fo(θ)dθ,

where $Pr (U=1|θ) is the conditional probability of the correct item response given a particular θ value 

and is calculated using the item characteristic curve (ICC)

( ) ( )
( )

( )

1.7

1.7P̂r 1 1
1

a b

a b

eU c c
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θ

θθ
−

−= = + −
+

,

where a, b and c are parameters that characterize the item.  For the 3PL model, all the three parameters 

can vary across items while for the 1PL model, the a parameter is a constant and the c parameter is 0 for 
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all items.  The distribution fo(θ) is the ability distribution of the overall population.  Specifically, the 

estimated p-value of an item was derived by approximating this continuous distribution fo(θ) by 

averaging over the discrete empirical distributions of the ten groups, respectively, from the phase 2 

results of the BILOG-MG estimation.

The point biserial correlation was computed based on the joint distribution of the unique item 

and the common items in the overall population $Pr (Uo=u, Xco=x).  This joint distribution $Pr (Uo=u, 

Xco=x) is given by 

$Pr (Uo=u, Xco=x)

=∫ $Pr (U=u, Xc|θ) fo(θ) dθ

=∫ $Pr (U=u|θ) $Pr (Xc|θ) fo(θ) dθ

where $Pr (U=1|θ) was calculated using the ICC and $Pr (U=0|θ) is 1– $Pr (U=1|θ).  $Pr (Xc|θ), the 

distribution of the number correct common item scores conditioned on a particular θ value, was obtained 

by the Lord-Wingersky algorithm (Lord & Wingersky, 1984).  In this study, there were 13 possible 

values of $Pr (Xc|θ) for a particular θ, one for each of the common item scores of 0, 1,..., 12.

To derive this joint distribution $Pr (Uo=u, Xco=x), the continuous distribution fo(θ) was also 

approximated with the discrete empirical distributions of the ten groups from the phase 2 outcomes of 

the BILOG-MG estimation.  The correlation based on values of this bivariate distribution $Pr (Uo=u, 

Xco=x) was the estimated point biserial correlation of interest in this study, which can be written as

$
$Pr( , ) $Pr( ) $Pr( )

$Pr( ) $Pr( ) $Pr( ) $Pr( )
ρ =

= = − = =

= − = = − =

∑∑∑
∑ ∑ ∑ ∑

ux U u Xc x u U u x Xc x

u U u u U u x Xc x x Xc x

o o o o

o o o o
2 2 2 2

,

where $Pr (Uo=u, Xco=x) is the joint distribution of the unique item and common item scores and 
$Pr (Uo=u) and $Pr (Xco=x) are the marginal distributions of the unique item and common items, 

respectively, estimated based on the 1PL or 3PL model.

The classical p-value and point biserial correlation were also computed using the standardization 

method for each unique item based on the response data in each of the ten groups.  In this study, the joint 

distribution of the unique and common items Pr(Ug=u, Xcg=x) was smoothed using the bivariate 

polynomial log-linear model (Hanson, 1991; Rosenbaum & Thayer, 1987).  The model used polynomial 

degree 5 for the common item number correct score, degree 1 for the unique item score, and degree 2 for 

the interaction of the common item number correct score and the item score.  The marginal distribution 
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of the common items Pr(Xco=x) across all groups was smoothed using a univariate polynomial log-

linear model in Kolen (1991) with polynomial degree 5.  This smoothed marginal distribution was used 

with the smoothed bivarate distribution in each group to produce estimates of the p-values and point 

biserial correlations.

Replications

The above process of estimating the item statistics was replicated 500 times for both the 1,000 

and 2,500 sample size conditions, respectively.

II.  The Real Pretest Data Application

The methods were also evaluated using real pretest data from a high-stakes Social Science test 

currently under development.  The concerns about test security prevented all pretest items from being 

administered to the same group of examinees, so the pretest items were included in parallel forms and 

administered to different small groups of examinees.  In each form of the test, there were 55 unique 

items and a set of 15 common items which were located at different positions in each form.  This study 

investigated eight forms of the test, a total of 455 items, taken by eight groups of examinees, respectively.  

The groups used for pretesting were somewhat conveniently formed based on school and the concerns 

about item exposure precluded the administration of different forms to the same school using a spiraling 

process.  Because the groups taking the different forms represented samples from different schools, the 

groups were nonequivalent.

The data-collection process was based on a design similar to that used in the first part of this 

study.  However, due to practical limitations during pretesting, there existed in this data set some 

differences from the simulated realistic data such that the forms may not be as parallel, the extent to 

which the common items were representative of the total test may not be as great, and the variation in 

item statistics of the pretest items was greater.

Table 3 presents the summary statistics of the common item scores for the various groups on this 

Social Science test.  The N column lists the number of examinees for each group, which varied slightly 

among the groups.

The Cr iter ia

For the simulation part of this study, the population p-values and point biserial correlations were 

used as the baselines for evaluating the accuracy of the estimated p-values and point biserial correlations 

based on the 1PL model, the 3PL model, and the standardization method.  Two indices were used as the 

criteria.  One was the Pearson product-moment correlation coefficient between the estimated and 



9

population item statistics.  The other criterion was the mean square error (MSE) over items.  The MSE 

value is the expected squared difference between the estimated and population item statistics and can be 

decomposed into variance and squared bias.  Variance is the average squared difference between the 

estimated and the expected value of the estimated item statistics across replications.  Bias is the 

difference between the expected value of the estimated item statistics and the population value across 

replications.

Provided below were the formulas used to compute the MSE, variance and squared bias for the 

p-value over the 500 replications with respect to each of the unique items i.

( )
500

2

1

1 ˆ
500i ir i

r

MSE p p
=

= −∑ ,

( )
500

2

1

1 ˆ
500i ir i

r

Variance p p
=

= −∑ , and

( )
2500

2

1

1 ˆ
500i ir i

r

Bias p p
=

 = −  
∑ ,

where r = 1, 2,..., 500, $pir  is the estimated p-value of the unique item i for the rth replication, pi  is the 

mean of the estimated p-values across the 500 replications, and pi  is the population p-value of the 

unique item i.

For the point biserial correlations, the following formulas were used to compute the MSE, 

variance and squared bias over the 500 replications with respect to each of the unique items i .

( )
500

2

1

1 ˆ
500i ir i

r

MSE ρ ρ
=

= −∑ ,
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1 ˆ
500i ir i

r

Variance ρ ρ
=

= −∑ , and

( )
2500

2

1

1 ˆ
500i ir i

r

Bias ρ ρ
=

 = −  
∑ ,

where r = 1, 2,..., 500, $ρ ir  is the estimated point biserial correlation of the unique item i for the rth 

replication, ρ i  is the mean of the estimated point biserial correlations across the 500 replications, and 

ρ i  is the population point biserial correlation of the unique item i.
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The average values of the MSE, variance and squared bias over items were computed as the 

criteria for the comparisons among the various methods.  To facilitate the comparison among the average 

MSE for the various methods, the standard errors of the mean MSE over items were provided to indicate 

whether the differences among the average MSE values for the various methods were large relative to 

the errors introduced by estimating these averages by simulation using 500 replications.  The standard 

error of the mean MSE over items (i.e., the variability over the 500 replications of the average MSE over 

items) was computed by

( )
500 2

' '

1

500
500

r
r

MSE MSE
=

−∑
.

For the rth replication, ( )
240

2'

1

1 ˆ
240r ri i

i

MSE p p
=

= −∑ for the p-value and ( )
240

2'

1

1 ˆ
240r ri i

i

MSE ρ ρ
=

= −∑  for the 

point biserial correlation, where i = 1, 2,..., 240 is the number of items.  'MSE is the average of the 
'
rMSE  values across the 500 replications.

For the real pretest data application, the performance of the various approaches was evaluated by 

treating one of the 15 common items as a non-common item.  That is, that item was treated as a unique 

item in each form even though it was actually the same item.  The common item chosen was the one 

whose item statistics differed more among the groups than any other 14 common items.  In each group, 

estimates of the item p-value and point biserial correlation for that common item were computed 

employing the 1PL, 3PL and standardization methods, respectively.  These estimates were compared to 

the population item statistics for that common item using data from all forms.  The population p-value 

was the proportion correct of that common item over all groups of the examinees.  The population point 

biserial correlation was the correlation of that item and the score on the other 14 common items using all 

the data.

Results

The first part of this section presents the results of the 1PL model, the 3PL model and the 

standardization method using the simulated realistic data with respect to each of the criteria: the Pearson 

product-moment correlation, the MSE, variance and squared bias for both the p-values and point biserial 

correlations.  The second part of this section contains outcomes of the real pretest data applications for 

the three methods.
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I.  The Simulation Study

The Results in Terms of the Pearson Product-Moment Correlation

Summary statistics for the Pearson product-moment correlation coefficients between the 

estimated and population item statistics are displayed in Table 4 for the various methods.  Since the 

sample size per form was not exactly 100 and 250 due to the way the data were generated in the current 

study, the two samples were labeled as 1,000 or 2,500, representing the total sample size across all forms.  

The N column indicates the number of replications.

It can be seen that for the p-values, all three methods recovered the population p-values to a 

similar degree under the two sample size conditions.  The average correlation for the 3PL model was 

slightly higher than that for the 1PL or standardization method.  In fact, it may be concluded that these 

three methods performed equally well in recovering the population p-values.

Table 4 reveals that all methods performed less well in recovering the point biserial correlations 

than the p-values.  The correlations were higher for all three methods when the sample size was 2,500 

than when the sample size was 1,000.  For either of the two sample sizes, the 3PL model yielded the 

highest average correlation between the estimated and population point biserial correlations.  The 

standardization method performed less well than the 3PL model in recovering these correlations and the 

difference was greater for a sample size of 1,000 than for a sample size of 2,500.  The results indicated 

that the performance of the 1PL model was very poor for both sample sizes.

The Results in Terms of the MSE, Variance and Squared Bias

Table 5 shows the summary statistics for p-value MSE, variance and squared bias over the 240 

items for the two sample sizes, respectively.  The N column shows the number of the unique items.  It 

can be seen that for either of the two sample sizes, the average MSE value over items was the lowest for 

the 3PL method.  The average MSE was lower for the 1PL method than the standardization method.  

When the sample size was 2,500, the differences among these three methods became smaller.  Relative 

to the errors in the estimates due to estimation by simulation with the 500 replications, the differences 

among these three methods were large for both sample size conditions.  The results showed that the 3PL 

method yielded the smallest overall error for estimating the p-values, followed by the 1PL method.  The 

standardization method had the largest average MSE across items.

With respect to the variance, the average value over items was lower for the 3PL method than for 

the other two methods.  Their differences were smaller when the sample size was 2,500.  The average 

squared bias for the 3PL model was lower than that for the 1PL model.  The average values of the 

squared bias were slightly lower for the 1PL model than the standardization approach.



12

Displayed in Table 6 are the summary statistics of the MSE, variance and squared bias over the 

240 items for the point biserial correlations.  There seems to be greater differences among the methods 

with regard to the point biseral correlations than there were for the p-values.  The average MSE over the 

240 items was still the lowest for the 3PL model for both sample sizes.  When the sample size of 1,000 

was used, the 1PL model produced a lower average MSE value than the standardization method, but 

when the sample size of 2,500 was employed, the average MSE was lower for the standardization 

method than for the 1PL model.  Relative to the standard errors of the average MSE introduced by 

simulation using 500 replications, differences among the methods were quite large.  These findings seem 

to suggest that the 3PL model performed better overall than the 1PL or standardization approach in terms 

of estimating the point biserial correlations.  Employing the larger sample size of 2,500 seems to 

substantially lower the MSE over items for the standardization method in estimating the point biserial 

correlations.

While the average variance over items for the 3PL method was the lowest for the p-values (see 

Table 5), the average variance for the 1PL method was the lowest for the point biserial correlations in 

Table 6.  The standardization method had the hightest average value of the variance.  For the squared 

bias, it can be seen that the average values for both the 3PL and standardization methods were 

substantially lower than that for the 1PL model, no matter what sample size was used.  The squared bias 

was slightly lower for the standardization method than the 3PL model when the sample size was 1,000, 

but the squared bias was lower for the 3PL method when the sample size was 2,500.

II.  The Real Pretest Data Application

In the real pretest data applications, problems occurred when the BILOG-MG 3PL model was fit 

to the response data.  Eight unique items were not being calibrated for their b-parameters due to very low 

or negative point-biserial correlations.  These items were discarded from the analyses of this study, so 

447 items remained.  For the standardization method, a fifth degree polynomial was used for the 

common item score and a second degree polynomial was used for the interaction of the common item 

number correct score and the item score.  Across the eight groups, the proportion correct of the common 

item being treated as a unique item (i.e., the population p-value) was .50161 and the correlation between 

that item and the total score of the other 14 common items (i.e., the population point biserial correlation) 

was .39877.

Results in Table 7 are the item statistics of the common item as a unique item estimated by the 

1PL, 3PL and standardization methods, respectively, in each of the eight groups.  The unadjusted item 

statistics in each group are also reported in Table 7.  The variation of the estimated point biserial 

correlations of the 3PL and standardization methods were somewhat large.  The reason might be that the 
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common item was chosen whose item statistics differed more among the groups than any of the other 14 

common items.

The differences between the estimated and population p-values and point biserial correlations are 

contained in Table 8, along with the average of the absolute differences across groups.  The average 

absolute p-value difference for the 1PL model was the smallest and the average absolute difference for 

the 3PL model was the largest.  In terms of the average absolute point biserial correlation difference, the 

standardization method produced the largest value and the 1PL model resulted in the smallest value.  

The 1PL method estimated the point biserial correlations that were the closest to the population value.  

Compared with its performance in the realistic data simulated using the 50-dimensional MIRT model, 

the 3PL model seemed not to work as well with the real pretest data in making the adjustments of the 

item statistics.  The 1PL model seemed to perform better with the real pretest data than the simulated. 

All the adjustment methods worked better on average than not performing any adjustment.

Conclusions

Based on the response data of the various examinee groups, IRT models can be employed to 

estimate item parameters and convert these parameters to be on the same scale using IRT scaling or 

transformation methods.  However, when the examinee groups are small, employing traditional IRT item 

calibration or scaling may not be justified due to the large sample size requirement.  This study explored 

the standardization approach to adjust conventional item statistics which has a less strict sample size 

requirement.  The purpose of using the standardization method was to adjust the item statistics obtained 

from small nonequivalent samples to more closely represent the item statistics that would have been 

obtained if the item had been administered in all groups.  This method was implemented by 

incorporating a set of common items across the various forms of a test and using the assumption that the 

conditional distributions of unique or noncommon items given common items were the same across all 

groups of examinees.

The investigations in the current study were proceeded by simulating realistic data from a 50-

dimensional MIRT model.  Ten forms were created to be as parallel as possible in their content and 

statistical specifications.  The examinees' abilities were generated from a standard multivariate normal 

distribution.  The examinees were then assigned to the various groups using the generated observed 

scores of an additional form of the math test.  The rule used to assign examinees to groups resulted in 

examinees with lower scores being more likely to be assigned to the lower examinee groups than 

examinees with higher scores.  The group differences obtained were similar in magnitude to the group 

differences observed with the real pretest data in this study.  The two samples of 1,000 and 2,500 were 

generated for the ten groups of examinees, with sizes of about 100 and 250 in each group, respectively.
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The effectiveness of the standardization approach was compared with that of the 1PL and 3PL 

models using the Pearson product-moment correlation, the MSE, variance and squared bias as the 

criteria for evaluation.  The results showed that with respect to estimating the p-values, the 3PL model 

produced the smallest overall error, followed by the 1PL model, for both sample size conditions.  The 

overall error for the standardization method was slightly higher than the 1PL model.  For the estimation 

of the population point biserial correlations, the 3PL model still performed better than the 1PL or 

standardization method for either of the two sample sizes.  When the sample size was 1,000, the 1PL 

model outperformed the standardization method, but when the sample size was 2,500, the 

standardization method performed better.  Employing the larger sample size of 2,500 substantially 

lowered the MSE over items for the standardization method.

It was somewhat surprising that the 3PL model continued to perform fairly well, even with a 

sample size of about 100 per unique item.  These results might be in part due to the groups being formed 

based on the score on another math form.  Consequently, the groups differed on the same basic 

composite trait being measured by the items.  If the groups had been based on another score such as 

English and Reading, the IRT models might not have been able to adjust the p-values and point biserial 

correlations as well.  Further studies based on some other criterion for the assignment into groups could 

investigate this issue.  Perhaps the concern about the inaccuracy in parameter estimation using the 

BILOG-MG 3PL model when calibration sample sizes are small could be possibly lessened when the 

parameter estimates are used to estimate p-values and point biserial correlations.

The performance of the three methods was also evaluated using the real pretest data of a Social 

Science test.  The results were not consistent with those of the realistic data simulated based on the 50-

dimensional MIRT model.  In estimating the population p-value of the common item chosen to be a 

unique item in each form, the 1PL model performed better than the standardization method, and the 

standardization method performed better than the 3PL model.  In estimating the population point biserial 

correlation of that item, the 1PL model produced the best outcome, followed by the 3PL model.  The 

standardization method resulted in the poorest estimation.  However, it is important to recognize that the 

results with the real pretest data were only based on one common item whose item statistics differed 

more among the groups than any other common item.  It might be worthwhile to examine the relative 

performance of the methods on the adjustments of the p-values and point biserial correlations for other 

common items.

The results showed that the relative performance of the 1PL, 3PL and standardization methods 

was not consistent between the simulated and real pretest data sets.  When the simulated realistic data 

were employed, the standardization method proposed in this study failed to outperform the 3PL model in 

recovering the population p-values and point biserial correlations.  But when the real pretest data were 
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used, the standardization method seemed to perform better than the 3PL model in recovering the 

population p-value, although not in recovering the population point biserial correlation.  Results for 

which of the methods performed better could not be suggested based on the findings of this study.  It is 

unknown what accounted for the differences in the adjustments.  Factors such as the number and 

location of the common items, the representativeness of common items to the entire test, the item 

characteristics of both unique and common items, the variation in item statistics, and the degree of form 

parallelism might have contributed in part to the differences of the results.  Also, the standardization 

procedure was carried out based on the assumption that the conditional distributions of unique items 

given common items are the same across all groups of examinees.  It is not known the extent to which 

the assumption held for either of the simulated and real pretest data.  Further investigations might be 

attempted to look at these effects on the performance of the various methods.

Moreover, it might be beneficial to examine the performance of the various approaches when 

group differences are greater.  In the current study, the amount of group differences for both simulated 

and real pretest data was fairly small, so it may not have required large adjustments on the p-value and 

point biserial correlations for the various methods.  The issue of the degree to which the methods are 

affected by group differences needs more study.

Unadjusted p-values and points biserial correlations were reported for the real data along with the 

adjusted values produced by the three adjustment methods.  On average, each of the adjustment methods 

produced more accurate results than using the unadjusted values.  While the adjusted values were closer 

to the overall value in some cases, the adjusted values were just about as far away from the overall value 

as the unadjusted values were.  This raises the question of whether any of the adjusted values, even 

though they are better than the unadjusted values, is providing item statistics that are accurate enough to 

rely on for constructing test forms.

The requirement of large sample sizes for calibrating items based on IRT models is not easily met 

in many practical pretesting situations.  Although classical item statistics could be estimated with much 

smaller samples, the values may not be comparable across different groups of examinees.  This study 

further explored the standardization method and compared its effectiveness with the IRT methods in 

adjusting pretest item statistics with small sample sizes using more realistic simulated data than used in 

Chang et al. (2000).  One must be cautious about making conclusions about the standardization method 

relative to IRT methods based on these studies due to the very limited number of conditions studied.  

Still, in most cases in both studies the IRT method produced more accurate results than the 

standardization method, although the difference in performance between the standardization method and 

the better performing IRT method was not large.  There was also some inconsistency with regard to 

which IRT method performed better than the standardization method.  The standardization method 
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appears to be a viable alternative to IRT methods that may be simpler to implement, although these 

results do not suggest that it will produce more accurate results.
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Table 1.  Conditional Probabilities of Being Assigned to Groups

Quantile of Score on Additional Math Form

1st 2nd 3rd 4th

Group 1 0.15000 0.12500 0.07500 0.05000

Group 2 0.14000 0.12500 0.07500 0.06000

Group 3 0.12500 0.12500 0.07500 0.07500

Group 4 0.12500 0.10000 0.10000 0.07500

Group 5 0.10000 0.10000 0.10000 0.10000

Group 6 0.10000 0.10000 0.10000 0.10000

Group 7 0.07500 0.10000 0.10000 0.12500

Group 8 0.07500 0.07500 0.12500 0.12500

Group 9 0.06000 0.07500 0.12500 0.14000

Group 10 0.05000 0.07500 0.12500 0.15000
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Table 2.  Moments of Common Item Score for Simulated Sample of 10000

N Mean SD Skewness Kurtosis

Group 1 1038 5.39692 2.44722 0.39510 -0.33676

Group 2 1013 5.48075 2.52632 0.38292 -0.45293

Group 3 945 5.67196 2.66218 0.36747 -0.49959

Group 4 1023 5.65689 2.57235 0.24174 -0.62087

Group 5 996 6.16767 2.71623 0.13235 -0.79604

Group 6 1000 5.99900 2.65745 0.16854 -0.71347

Group 7 1033 6.37754 2.70994 0.13243 -0.73396

Group 8 1022 6.54305 2.72429 0.05894 -0.81276

Group 9 993 6.82578 2.62180 -0.00167 -0.76619

Group 10 937 6.97225 2.62818 -0.08643 -0.67459
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Table 3.  Summary Statistics of the Common Item Scores of the Social Science

Pretest Data for the Various Groups

N Mean SD Skewness Kurtosis Minimum Maximum

Group 1 236 9.38136 3.05807 -0.24872 -0.78745 2 15

Group 2 233 9.77253 2.98195 -0.20143 -0.69539 3 15

Group 3 231 10.21212 3.28012 -0.38077 -0.88370 2 15

Group 4 238 10.23529 3.29609 -0.60110 -0.53485 1 15

Group 5 235 10.42553 3.03220 -0.49267 -0.58135 3 15

Group 6 232 10.48276 2.95415 -0.53891 -0.32423 1 15

Group 7 234 10.53419 3.24945 -0.51341 -0.67732 2 15

Group 8 225 10.70667 3.36250 -0.66154 -0.47533 1 15
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Table 4.  Summary Statistics of the Correlations between
      the Estimated and Population Item Statistics

P-Values
1000 Sample Sizes

Method N Mean SD Minimum Maximum
1PL 500 0.97458 0.00254 0.96528 0.98181
3PL 500 0.97599 0.00241 0.96833 0.98292
Standardization 500 0.97347 0.00276 0.96525 0.98151

2500 Sample Sizes
Method N Mean SD Minimum Maximum
1PL 500 0.98846 0.00115 0.98430 0.99121
3PL 500 0.99001 0.00095 0.98652 0.99326
Standardization 500 0.98791 0.00131 0.98200 0.99074

Point Biserial Correlations
1000 Sample Sizes

Method N Mean SD Minimum Maximum
1PL 500 0.19047 0.03750 0.08625 0.30472
3PL 500 0.72769 0.02528 0.64924 0.79472
Standardization 500 0.63362 0.03814 0.49444 0.74145

2500 Sample Sizes
Method N Mean SD Minimum Maximum
1PL 500 0.19315 0.02507 0.12369 0.28060
3PL 500 0.80883 0.01750 0.75717 0.86445
Standardization 500 0.75609 0.02486 0.68911 0.81391
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Table 5.  Summary Statistics of the MSE, Variance and Squared Bias for the P-Values for the Various Methods

1000 Sample Sizes
MSE

Method N Mean SD Minimum Maximum Standard Error
1PL 240 0.00210 0.00049 0.00059 0.00475 0.000009482
3PL 240 0.00191 0.00042 0.00052 0.00293 0.000008696
Standardization 240 0.00218 0.00052 0.00064 0.00475 0.000010285

Variance
Method N Mean SD Minimum Maximum
1PL 240 0.00194 0.00040 0.00053 0.00278
3PL 240 0.00186 0.00042 0.00049 0.00288
Standardization 240 0.00201 0.00040 0.00058 0.00285

Squared Bias
Method N Mean SD Minimum Maximum
1PL 240 0.00015 0.00027 0.00000 0.00251
3PL 240 0.00005 0.00007 0.00000 0.00045
Standardization 240 0.00017 0.00025 0.00000 0.00223

2500 Sample Sizes
MSE

Method N Mean SD Minimum Maximum Standard Error
1PL 240 0.00093 0.00032 0.00027 0.00314 0.000004155
3PL 240 0.00079 0.00017 0.00022 0.00117 0.000003458
Standardization 240 0.00097 0.00033 0.00029 0.00299 0.000004758

Variance
Method N Mean SD Minimum Maximum
1PL 240 0.00078 0.00016 0.00023 0.00113
3PL 240 0.00077 0.00016 0.00022 0.00115
Standardization 240 0.00080 0.00016 0.00024 0.00115

Squared Bias
Method N Mean SD Minimum Maximum
1PL 240 0.00015 0.00026 0.00000 0.00221
3PL 240 0.00002 0.00003 0.00000 0.00019
Standardization 240 0.00018 0.00025 0.00000 0.00202
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Table 6.  Summary Statistics of the MSE, Variance and Squared Bias
                for the Point Biserial Correlations for the Various Methods

1000 Sample Sizes
MSE

Method N Mean SD Minimum Maximum Standard Error
1PL 240 0.00833 0.01130 0.00011 0.06186 0.000019858
3PL 240 0.00470 0.00396 0.00182 0.02788 0.000023462
Standardization 240 0.01070 0.00649 0.00512 0.05531 0.000050773

Variance
Method N Mean SD Minimum Maximum
1PL 240 0.00026 0.00016 0.00011 0.00106
3PL 240 0.00263 0.00072 0.00119 0.00603
Standardization 240 0.00867 0.00212 0.00484 0.01785

Squared Bias
Method N Mean SD Minimum Maximum
1PL 240 0.00807 0.01128 0.00000 0.06144
3PL 240 0.00207 0.00386 0.00000 0.02260
Standardization 240 0.00203 0.00584 0.00000 0.04311

2500 Sample Sizes
MSE

Method N Mean SD Minimum Maximum Standard Error
1PL 240 0.00815 0.01123 0.00004 0.06183 0.000011344
3PL 240 0.00326 0.00456 0.00092 0.02738 0.000014745
Standardization 240 0.00537 0.00607 0.00224 0.04633 0.000024171

Variance
Method N Mean SD Minimum Maximum
1PL 240 0.00010 0.00006 0.00004 0.00037
3PL 240 0.00155 0.00044 0.00067 0.00342
Standardization 240 0.00335 0.00077 0.00198 0.00631

Squared Bias
Method N Mean SD Minimum Maximum
1PL 240 0.00805 0.01122 0.00000 0.06167
3PL 240 0.00171 0.00447 0.00000 0.02430
Standardization 240 0.00202 0.00591 0.00000 0.04173
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Table 7. Results of the Estimated Item Statistics of the Common Item
 as a Unique Item by Method and Group

Estimated P-Values Estimated Point Biserial Correlations
Unadjusted 1PL 3PL Standardization Unadjusted 1PL 3PL Standardization

Group 1 0.36864 0.43066 0.45737 0.41407 0.31868 0.36717 0.42806 0.34504
Group 2 0.47210 0.51273 0.52953 0.50512 0.31853 0.37521 0.39379 0.33898
Group 3 0.53247 0.53535 0.54754 0.53485 0.54047 0.37580 0.46054 0.52815
Group 4 0.53782 0.53673 0.53271 0.53549 0.36957 0.37581 0.37769 0.36332
Group 5 0.49362 0.47589 0.48308 0.48213 0.36989 0.37274 0.34426 0.37631
Group 6 0.51724 0.49969 0.49940 0.50752 0.27434 0.37455 0.28965 0.28130
Group 7 0.58120 0.55865 0.56663 0.55921 0.50663 0.37564 0.43942 0.49266
Group 8 0.51111 0.46573 0.44465 0.46096 0.43649 0.37174 0.38609 0.41275
Mean 0.50177 0.50193 0.50761 0.49992 0.39183 0.37358 0.38994 0.39231
SD 0.06273 0.04265 0.04366 0.04674 0.09470 0.00300 0.05504 0.08232

Table 8. Differences of the Estimated and Population Item Statistics of the Common Item
 as a Unique Item by Method and Group

P-Value Difference Point Biserial Correlation Difference
Unadjusted 1PL 3PL Standardization Unadjusted 1PL 3PL Standardization

Group 1 -0.13297 -0.07095 -0.04424 -0.08754 -0.08009 -0.03160 0.02929 -0.05373
Group 2 -0.02951 0.01112 0.02792 0.00351 -0.08024 -0.02356 -0.00498 -0.05979
Group 3 0.03086 0.03374 0.04593 0.03324 0.14170 -0.02298 0.06177 0.12938
Group 4 0.03621 0.03512 0.03110 0.03388 -0.02920 -0.02296 -0.02108 -0.03545
Group 5 -0.00799 -0.02573 -0.01853 -0.01948 -0.02888 -0.02603 -0.05451 -0.02246
Group 6 0.01563 -0.00192 -0.00221 0.00591 -0.12443 -0.02422 -0.10912 -0.11747
Group 7 0.07959 0.05704 0.06502 0.05760 0.10786 -0.02313 0.04065 0.09389
Group 8 0.00950 -0.03588 -0.05696 -0.04065 0.03772 -0.02703 -0.01268 0.01398
Mean Abs 0.04278 0.03394 0.03649 0.03523 0.07877 0.02519 0.04176 0.06577
Note.  The difference was the value of the estimated item statistic minus the population item statistic.
           The population p-value is .50161 and the population point biserial correlation is .39877.
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