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The EM (Expectation-Maximization) algorithm is a method for computing maximum likelihood and
Bayes modal parameter estimates in situations where some data are missing (Dempster, Laird, and Rubin,
1977; McLachlan and Krishnan, 1997). The EM algorithm gives parameter estimates that maximize the
likelihood of the observed data using computations that involve the likelihood of the complete data (where
the complete data is the observed data plus the missing data). The EM algorithm is an iterative algorithm
that involves two steps at each iteration: the E (expectation) step, and the the M (maximization) step. In
the E step the expected values of the complete data sufficient statistics for the parameters are computed
by averaging over the conditional distribution of the missing data given the observed data and provisional
values of the parameters. In the M step parameter estimates that maximize the complete data likelihood are
computed using the expected complete data sufficient statistics computed in the E step. The E and M steps
are repeated until the parameter estimates converge. The EM algorithm can result in significantly simplified
computation compared to trying to find parameter estimates that maximize the observed data likelihood
directly. This simplification will occur when computing maximum likelihood parameter estimates using the
complete data likelihood is relatively simple (i.e., if the missing data were known the parameter estimates
would be simple to compute).

This paper describes computing maximum likelihood estimates of parameters in IRT models for dichoto-
mous items using the EM algorithm. Brief descriptions of how to use the EM algorithm to compute Bayes
modal parameter estimates and maximum likelihood parameter estimates for polytomous IRT models are
given in the final section.

Data
Observed Data. The observed data are the responses of a sample of N examinees to J dichotomous items.
The observed data are contained in a N × J matrix Y, where Y = (y1,y2, . . . ,yN )t, yi is a vector given
by (yi1, yi2, . . . , yiJ), and yij is one if examinee i answered item j correctly, and zero if examinee i answered
item j incorrectly.
Missing Data. The missing data are values of an unobserved latent variable for each examinee. The missing
data are θ = (θ1, θ2, . . . , θN ), where θi is the value of the latent variable for examinee i. The possible values
of θi can be real numbers (latent trait models) or categories (latent class models).
Complete Data. The complete data are the observed data plus the missing data for each examinee. The
complete data are [(y1, θ1), (y2, θ2), . . . , (yN , θN )].

Model
In latent trait models the latent variable is considered to be continuous (a real number that can take on

any value). In this paper the latent variable is taken to be discrete in both latent trait and latent class models,
and estimation procedures are derived based on the discrete latent variable. This results in exactly the same
algorithm as is obtained by deriving estimation procedures based on a continuous latent variable and then
implementing approximations of those procedures with a discrete version of the continuous latent variable
using numerical integration (e.g., Bock and Aitken, 1981; Muraki, 1992). In this paper the specification of
a discrete latent variable is done in the model itself, rather than as an approximation to a continuous latent
variable for the purposes of numerical integration. This results in a more straight forward description of the
EM algorithm.

It is assumed the latent variable takes on K known discrete values qk, k = 1, . . . ,K, with associated
unknown probabilities πk, k = 1, . . . ,K. With this assumption the latent variable has a multinomial dis-
tribution with probabilities π = (π1, π2, . . . , πK). The notational convention used in this paper is that qk,
k = 1, 2, . . . ,K, are the K possible values of the latent variable, whereas θi is the unspecified value of the
latent variable for examinee i which can equal any of the qk.

The probability of observing item responses y = (y1, y2, . . . , yJ) for a randomly sampled examinee from
a population with a latent variable distribution given by the probabilities π = (π1, π2, . . . , πJ) is

f(y | ∆,π) =
K∑

k=1

f(y, qk | ∆, πk)
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=
K∑

k=1

f(y | qk,∆)πk , (1)

where ∆ represents the item parameters which determine the probability of a particular set of item responses
occurring given a fixed value of the latent variable, and f(y | qk,∆) is the conditional probability distribution
of the item responses for examinees with a value of the latent variable equal to qk. Note that the probability
given in Equation 1 is the marginal probability of the observed data (the bivariate distribution of the observed
and missing data has been summed over the distribution of the missing data).

It is assumed that given a value of the latent variable the item responses are independent. Thus,
the relationship among the item responses is accounted for by the latent variable. Given this assumption
f(y | qk,∆) can be written as

f(y | qk,∆) =
J∏

j=1

P (qk | δj)yj [1 − P (qk | δj)]1−yj , (2)

where P (qk | δj) is item characteristic curve for item j (which gives the probability of a correct response to
item j as a function of the latent variable), and δj are the item parameters for item j. From Equations 1
and 2 the likelihood of the observed data for a sample of N examinees is given by

L(Y | ∆,π) =
N∏

i=1




K∑
k=1

πk

J∏
j=1

P (qk | δj)yij [1 − P (qk | δj)]1−yij


 (3)

Maximum likelihood estimates of the parameters ∆ and π are the values that maximize Equation 3. Finding
the parameters that maximize Equation 3 is sometimes called marginal maximum likelihood because the
likelihood in Equation 3 is based on the marginal distribution of the observed data given in Equation
1. Finding maximum likelihood estimates using the observed data likelihood directly (Equation 3) can
be complicated (Bock and Lieberman, 1970; Thissen, 1982). The EM algorithm greatly simplifies the
computation of maximum likelihood estimates of ∆ and π.

EM Algorithm
The EM algorithm is a method of finding the parameters that maximum the observed data likelihood

given by Equation 3 using the complete data likelihood. The first step in describing the EM algorithm is to
present the complete data likelihood which is used in the M step.
Complete Data Likelihood

The probability of a randomly sampled examinee having observed item responses y and a value of the
latent variable in category k is

f(y, qk | ∆,π) = f(y | qk,∆)πk . (4)

From Equations 4 and 2 the likelihood of the complete data for a sample of N examinees is

L(Y,θ | ∆,π) =
N∏

i=1

J∏
j=1

P (θi | δj)yij [1 − P (θi | δj)]1−yijf(θi | π)

=
J∏

j=1

N∏
i=1

P (θi | δj)yij [1 − P (θi | δj)]1−yijf(θi | π)

=
J∏

j=1

K∏
k=1

P (qk | δj)rjk [1 − P (qk | δj)]nk−rjkπnk

k , (5)

where f(θi | π) = πk if θi = qk, nk is the number of the N examinees for whom the latent variable is
contained in category k, and rjk is the number of examines for whom the latent variable is contained in
category k and who answer item j correctly.
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Another way of deriving the complete data likelihood is to recognize that the complete data consist of
variables that are all discrete. There are 2JK possible combinations of item responses and values of the
latent variable. The data can be represented by the counts of the number of examinees that have each of
these possible combinations of observed and latent variables. These counts have a multinomial distribution.
Let myqk

be the number of examinees with observed item responses y and latent variable value qk. Then
the counts myqk

have a multinomial distribution with parameters given by the probabilities of the observed
item responses being equal to y and the latent variable being equal to qk. These multinomial probabilities
depend on the parameters of the IRT model (∆ and π). The multinomial distribution f(myqk

| ∆,π) can
be written as

f(myqk
| ∆,π) = f(my | qk,∆, nk)f(nk | π) , (6)

where my is the number of examinees with item response pattern y, f(my | q,∆, nk) is the distribution of
the number of examinees with item response pattern my given the latent variable is equal to qk, and f(nk | π)
is the distribution of the number of examinees with latent variable equal to qk. Both f(my | nk,∆) and
f(nk | π) are multinomial distributions (Bishop, Feinberg, and Holland, 1975, page 445). The likelihood of
the counts n1, n2, . . . , nK , ignoring terms in the multinomial likelihood that do not depend on the parameters,
is

L(n1, n2, . . . , nK | π) =
K∏

k=1

πnk

k . (7)

Since the item responses are independent given the latent variable the distribution f(my | qk,∆, nk) can
be written as a product of J binomial distributions giving the probability of rjk successes in nk trials with
binomial probabilities P (qk | δj). The likelihood of the counts rk = r1k, r2k, . . . , rJk, ignoring terms in the
binomial likelihoods that do not depend on the parameters, is

L(r1k, r2k, . . . , rJk | ∆, n1, n2, . . . , nK) =
J∏

j=1

P (qk | δj)rjk [1 − P (qk | δj)]nk−rjk . (8)

The likelihood of the counts rk over all the latent variable categories is

L(r1, r2, . . . , rK | ∆, n1, n2, . . . , nK) =
K∏

k=1

J∏
j=1

P (qk | δj)rjk [1 − P (qk | δj)]nk−rjk . (9)

The product of Equations 7 and 9 gives the likelihood of the counts r1, r2, . . . , rK and n1, n2, . . . , nK

(ignoring some terms that do not depend on the parameters):

L(r1, r2, . . . , rK , n1, n2, . . . , nK | ∆,π) =
J∏

j=1

K∏
k=1

P (qk | δj)rjk [1 − P (qk | δj)]nk−rjkπnk

k . (10)

Equation 10 is the same as Equation 5. The complete data likelihood obtained from the counts
r1, r2, . . . , rK and n1, n2, . . . , nK is the same as the likelihood obtained from the complete data for the
individual examinees. The counts r1, r2, . . . , rK and n1, n2, . . . , nK are the complete data sufficient statistics
for the parameters ∆ and π.

It is more convenient to maximize the log of the likelihood rather than the likelihood. The log-likelihood
(logarithm of Equation 10) is

log[L(R,n | ∆,π)] =
J∑

j=1

K∑
k=1

rjk log[P (qk | δj)] + (nk − rjk) log[1 − P (qk | δj)] + nk log[πk] , (11)

where R = (r1, r2, . . . , rK) and n = (n1, n2, . . . , nK).
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E Step and M Step
The EM algorithm is an iterative algorithm for estimating ∆ and π where there are two steps performed

at each iteration: the E step and the M step.

E step. The E step at iteration s (s = 0, 1, . . .) consists of computing the expected values of the complete
data sufficient statistics (r1, r2, . . . , rK , n1, n2, . . . , nK) over the conditional distribution of the missing data
given the observed data (Y) and fixed values of the parameters ∆(s) and π(s) obtained the M step of
iteration s − 1 (starting values for the parameters are used for ∆(0) and π(0)). The expected values of the
complete data sufficient statistics computed at iteration s are denoted r

(s)
jk , j = 1, . . . J, k = 1, . . . ,K and

n
(s)
k , k = 1, . . . ,K.

The conditional probability of the latent variable being equal to qk for examinee i given observed item
responses yi and parameter values of ∆(0) and π(0) is obtained from Equation 15 of Woodruff and Hanson
(1996) and Equation 2:

f(qk | yi,∆(s),π(s)) =
f(yi | qk,∆(s))π(s)

k∑K
k′=1 f(yi | qk′ ,∆(s))π(s)

k′

=
π

(s)
k

∏J
j=1 P (qk | δ

(s)
j )yij [1 − P (qk | δ

(s)
j )]1−yij

∑K
k′=1 π

(s)
k′

∏J
j=1 P (qk′ | δ

(s)
j )yij [1 − P (qk′ | δ

(s)
j )]1−yij

, (12)

The value n
(s)
k is the expected value of nk over the conditional distribution given in Equation 12. This

expected value is equal to the sum of the conditional probabilities of the latent variable for each examinee
being equal to qk. Using Equation 12 the value n

(s)
k is given by

n
(s)
k = E(nk | Y,∆(s),π(s)) =

N∑
i=1

f(qk | yi,∆(s),π(s)) =
N∑

i=1

f(yi | qk,∆(s))π(s)
k∑K

k′=1 f(yi | qk′ ,∆(s))π(s)
k′

=
N∑

i=1

π
(s)
k

∏J
j=1 P (qk | δ

(s)
j )yij [1 − P (qk | δ

(s)
j )]1−yij

∑K
k′=1 π

(s)
k′

∏J
j=1 P (qk′ | δ

(s)
j )yij [1 − P (qk′ | δ

(s)
j )]1−yij

. (13)

The value r
(s)
jk is the expected value of rjk over the conditional distribution given in Equation 12. This

expected value is equal to the sum of the conditional probabilities of the latent variable for each examinee
being equal to qk for those examinees who answered item j correctly. From Equation 12 the value of r(s)

jk is
given by

r
(s)
jk = E(rjk | Y,∆(s),π(s)) =

N∑
i=1

yijf(qk | yi,∆(s),π(s)) =
N∑

i=1

yijf(yi | qk,∆(s))π(s)
k∑K

k′=1 f(yi | qk′ ,∆(s))π(s)
k′

=
N∑

i=1

yijπ
(s)
k

∏J
j=1 P (qk | δ

(s)
j )yij [1 − P (qk | δ

(s)
j )]1−yij

∑K
k′=1 π

(s)
k′

∏J
j=1 P (qk′ | δ

(s)
j )yij [1 − P (qk′ | δ

(s)
j )]1−yij

. (14)

M step. The M step at iteration s consists of substituting the expected values of the complete data sufficient
statistics obtained in the E step at iteration s in the complete data log-likelihood given by Equation 11 and
finding the values of ∆ and π that maximize this log-likelihood. The values of ∆ and π that maximize the
log-likelihood at iteration s are denoted ∆(s+1) and π(s+1). These parameter estimates are used in the E
step in iteration s + 1.

The log-likelihood in Equation 11 using r
(s)
jk and n

(s)
j from iteration s of the E step can be written as

log[L(R(s),n(s) | ∆,π)] =
J∑

j=1

l(δj) + l(π) , (15)
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where

l(δj) =
K∑

k=1

r
(s)
jk log[P (qk | δj)] + (n(s)

k − r
(s)
jk ) log[1 − P (qk | δj)] , (16)

and

l(π) =
K∑

k=1

n
(s)
k log[πk] . (17)

To find the value of a parameter that maximizes Equation 11 the derivative of Equation 11 with respect
to the parameter is set equal to zero and solved for the parameter. The derivative of the complete data log-
likelihood with respect to parameter t of item j (δtj) only depends on l(δj) (if there are no common parameters
across items), and the derivative of the complete data log-likelihood with respect to πk only depends on
l(π). Consequently, maximum likelihood estimates of the parameters of each item and the parameters of
the latent variable distribution can be computed separately. This is in contrast to computing maximum
likelihood estimates using the observed data likelihood in Equation 3 where the derivative of the likelihood
with respect to one parameter would involve all other parameters. When using the observed data likelihood
all parameters must be estimated simultaneously. This is an example of the tremendous simplification in
the computation of maximum likelihood estimates that can occur when using the EM algorithm. If some
parameters are common across items then the parameters for items that have some common parameters
cannot be separately estimated, but it is still the case that estimates of item parameters and the parameters
of the latent variable distribution can be separately computed.

The portion of the log-likelihood corresponding to π [l(π)] is the log-likelihood for a sample from a multi-
nomial distribution with parameters π. The maximum likelihood estimate of the multinomial probability πk

is nk/N . Consequently, at iteration s in the M step the values of π(s+1)
k are computed by

π
(s+1)
k =

n
(s)
k

N
. (18)

The M step calculations to obtain π(s+1) are extremely simple.
The values of δ

(s+1)
j computed in the M step at iteration s are the solution of the system of equations:

∂l(δj)
∂δtj

= 0 , (19)

for t = 1, 2, . . . , Tj where there are Tj parameters for item j. Substituting Equation 16 into Equation 19 and
simplifying gives

K∑
k=1

r
(s)
jk − n

(s)
k P (qk | δj)

[1 − P (qk | δj)]P (qk | δj)
∂P (qk | δj)

∂δtj
= 0 , (20)

for t = 1, 2, . . . , Tj . Solving the system of equations in Equation 20 for δtj , t = 1, 2, . . . , Tj will result in
δ(s+1). Iterative procedures such as Newton-Raphson (Dennis and Schnabel, 1983) will typically be needed
to solve the system of equations given by Equation 20.

Implementation of the EM Algorithm for IRT Models
This section describes the specific procedure used to apply the EM algorithm in computing maximum

likelihood estimates of ∆ and π in IRT models using the results presented above. At iteration s, s = 0, 1, . . .,
the procedures used for the E step and M step are:

E step. Substitute π(s) and ∆(s) computed in iteration s− 1 (or starting values in iteration 0) in Equations
13 and 14 to produce values of n(s)

k and r
(s)
jk .

M step. The M step is performed in two parts which separately produce values of π(s+1) and ∆(s+1):
1. Compute values of π

(s+1)
k , k = 1, . . . ,K, using Equation 18 and the values of n

(s)
k computed in the E

step.
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2. Compute values of δ
(s+1)
j , j = 1, 2, . . . J , by solving the system of equations for each j given by Equation

20 using the values of r(s)
jk and n

(s)
k computed in the E step.

Iterations of the E and M steps are repeated until the parameter estimates convergence. Convergence
can be assessed by relative difference in the observed data likelihood from one iteration to the next (the
EM algorithm guarantees the observed data likelihood will increase on each iteration), or by differences in
parameter estimates between iterations.

The only part of the EM algorithm that could differ significantly for different IRT models is part 2 of
the M step. The degree of difficulty in solving the system of equations in part 2 of the M step for the item
parameters can vary for different IRT models.

The description of part 2 of the M step assumes there are no common item parameters across items.
If there are common item parameters across items (e.g., an item parameter is set to be equal across two or
more items) then the derivative of

∑J
j=1 δj in the log-likelihood of Equation 15 will depend on more than

just one δj , and the system of equations to be solved for the maximum likelihood estimates of the item
parameters will be more complicated than that given in Equation 20.

Note that the EM algorithm can be used to just estimate the latent variable distribution for a fixed set
of item parameters by only carrying out the first part of the M step on each iteration. Similarly, just the
item parameters can be estimated for a fixed latent variable distribution by only carrying out the second
part of the M step in each iteration.

Example — Guttman Scale Model
This section describes details of using the EM algorithm to find maximum likelihood parameter estimates

for a specific IRT model. The model to be considered is a generalized Guttman scale model, which is a type
of latent class model. For a latent class model the discrete levels of the latent variable (q1, q2, . . . , qK) are
assumed to be nominal categories. The values of qk are just labels rather than numerical values that represent
a position of an examinee on an underlying latent numerical scale. For the Guttman scale model the latent
classes will be referred to as levels (implying an ordering of the classes). The K levels (latent classes) are
labeled 0, 1, . . . ,K − 1 (so qk = k − 1). The levels are ordered in the following sense. Examinees at level 0
cannot answer any of the items correctly. Each level qk, qk > 0 has mk items associated with it. Examinees
at level qk can correctly answer all items at level qk and lower, but cannot correctly answer items at level
qk+1 and higher. In other words, examinees at level qk have all the skills necessary to correctly answer items
at level qk and lower, but additional skills not possessed by examinees at level qk are needed to correctly
answer items at level qk+1 and higher. This describes a generalized Guttman scale model where more than
one item is allowed at each level. In a traditional Guttman scale model there is only one item per level.

Associated with each level is a latent response pattern which indicates for each item whether examinees
at that level can answer the item correctly or not. For example, at level 0 the latent response pattern would
be a vector of zeros indicating that examinees at level 0 cannot answer any of the items correctly. The latent
response pattern at level 2 would have ones for items at levels 1 and 2, and zeros for items at levels 3 and
above. If there is only one item associated with level qk, k = 1, 2, . . . ,K, then the latent response patterns
form a traditional Guttman scale.

The latent response patterns indicate the responses of examinees at each level if examinees made no
errors. Response patterns other than the latent response patterns associated with each level can occur if
examinees make errors in responding to items. There are two types of errors that can occur — 1) an examinee
who should answer an item correctly answers it incorrectly (false negative error), and 2) an examinee who
should not be able to answer an item correctly answers it correctly (false positive error). To account for
these types of errors each item has two error probabilities associated with it. The false negative error rate
associated with item j is denoted αj , and the false positive error rate associated with item j is denoted βj .
Consequently, the probability that an examinee at level qk correctly answers item j [P (qk | αj , βj)] is

P (qk | αj , βj) = vkj(1 − αj) + (1 − vkj)βj , (21)

where vk = (vk1, vk2, . . . , vkJ) is the latent response pattern for level qk. The probability that an examinee
at level qk answers item j incorrectly is

1 − P (qk | αj , βj) = vkjαj + (1 − vkj)(1 − βj) . (22)
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Figure 1. Item Response Probabilities for Proctor's Constant Error Rate Model.
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Guttman scale models with restrictions on the false negative and false positive error rates given in
Equations 21 and 22 can be used. One type of restriction is that αj = βj . In this case the false negative
and false positive error rates are constant for item j (the error rates are constant within an item). Another
type of restriction is that αj = α and βj = β. In this case the false negative and false positive error rates
are constant between items. The two types of restrictions can be combined. If error rates are constant both
within and between items this means the false positive and false negative error rates for all items are equal
to a constant value (αj = βj = α, for all j).

Proctor (1970) presented a Guttman scale model for the case of one item per level (a traditional Guttman
scale) that had constant error rates both between and within items. Figure 1 presents plots of the probability
of correct response for a four item test assuming Proctor’s constant error rate model (where item j is
associated with level j, j = 1, . . . 4). The plots in Figure 1 are analogous to item characteristic curves in
latent trait models where the probability of a correct response to an item is a function of a continuous latent
variable. In Figure 1 the probability of a correct response for each item is a function of the ordered discrete
levels.

Maximum Likelihood Estimates using the EM Algorithm
Everitt (1984) and Bartholomew (1987) discuss using the EM algorithm to estimate parameters of latent

class models. The EM algorithm as described above can be used to compute maximum likelihood estimates
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for the Guttman scale model. The only thing that needs to be specified are the systems of equations solved
for the parameters of each item in the M step given by Equation 20. Once these systems of equations are
specified the EM algorithm can be carried out as described.

For item j there exists a k∗j such that vkj = 0 for qk < qk∗
j

and vkj = 1 for qk ≥ qk∗
j

(in the case of one
item per level, where item j is at level j, k∗j = j). Therefore, from Equation 21 P (qk | αj , βj) = 1 − αj for
qk < qk∗

j
and P (qk | αj , βj) = βj for qk ≥ qk∗

j
. Thus, Equation 20 with the derivative taken with respect to

parameter αj can be written as

k∗
j −1∑
k=1

r
(s)
jk − n

(s)
k βj

(1 − βj)βj

∂βj

∂αj
+

K∑
k=k∗

j

r
(s)
jk − n

(s)
k (1 − αj)

(1 − αj)αj

∂(1 − αj)
∂αj

= 0 . (23)

Since ∂βj/∂αj = 0 and ∂(1 − αj)/∂αj = −1 Equation 23 can be written as

K∑
k=k∗

j

−r
(s)
jk + n

(s)
k (1 − αj)

[1 − αj ]αj
=

1
(1 − αj)αj


(1 − αj)

K∑
k=k∗

j

n
(s)
k −

K∑
k=k∗

j

r
(s)
jk


 = 0 . (24)

Solving Equation 24 for αj gives

(1 − αj)
K∑

k=k∗
j

n
(s)
k =

K∑
k=k∗

j

r
(s)
jk

1 − αj =

∑K
k=k∗

j
r
(s)
jk

∑K
k=k∗

j
n

(s)
k

αj = 1 −
∑K

k=k∗
j
r
(s)
jk

∑K
k=k∗

j
n

(s)
k

. (25)

Equation 20 with the derivative taken with respect to parameter βj can be written as

k∗
j −1∑
k=1

r
(s)
jk − n

(s)
k βj

(1 − βj)βj

∂βj

∂βj
+

K∑
k=k∗

j

r
(s)
jk − n

(s)
k (1 − αj)

(1 − αj)αj

∂(1 − αj)
∂βj

= 0 , (26)

or
k∗

j −1∑
k=1

r
(s)
jk − n

(s)
k βj

(1 − βj)βj
= 0 . (27)

Solving Equation 27 for βj gives

βj

k∗
j −1∑
k=1

n
(s)
k =

k∗
j −1∑
k=1

r
(s)
jk

βj =

∑k∗
j −1

k=1 r
(s)
jk∑k∗

j
−1

k=1 n
(s)
k

. (28)

For the Guttman scale model part 2 of the M step involves the simple computations given by Equations
25 and 28. In this case computing the item parameter estimates in part 2 of the M step is as simple as
computing the latent variable distribution in part 1 of the M step. For a Guttman scale model the M
step is extremely easy to implement, and each iteration of the EM algorithm involves a sequence of simple
computations which are easy to program.
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Bayes Modal Estimates and Polytomous Items

This paper has described the EM algorithm for computing maximum likelihood parameter estimates for
dichotomous IRT models. This section gives brief presentations of two additional topics in the application of
the EM algorithm to computing item parameters in IRT models: 1) using the EM algorithm to compute Bayes
modal estimates, and 2) using the EM algorithm to compute maximum likelihood estimates for polytomous
IRT models.

Bayes Modal Estimates
The EM algorithm can be used to compute Bayes modal estimates as well as maximum likelihood

estimates (Dempster, Laird, and Rubin, 1977; Tanner, 1996). This section only discusses computing Bayes
modal estimates of item parameters. Hanson (1998) discusses using the EM algorithm to compute Bayes
modal estimates of the latent variable distribution.

The only difference in the EM algorithm described for computing maximum likelihood estimates of item
parameters and the EM algorithm used to compute Bayes modal estimates occurs in part 2 of the M step.
Instead of finding parameter estimates that maximize the complete data likelihood, parameter estimates are
found that maximize the complete data posterior distribution. In this description it is assumed that the
prior distributions for all item parameters are independent. In this case the logarithm of the complete data
posterior analogous to the log-likelihood in Equation 15 is:

log[L(R(s),n(s) | ∆,π)] =
J∑

j=1

l(δj) +
J∑

j=1

Tj∑
t=1

log[g(δtj)] + l(π) , (29)

where g(δtj) is the prior distribution of item parameter δtj , and l(δj) and l(π) are given by Equations 16
and 17, respectively. The system of equations analogous to Equation 20 to be solved in part 2 of the M step
are

∂ log[g(δtj)]
∂δtj

+
K∑

k=1

r
(s)
jk − n

(s)
k P (qk | δj)

[1 − P (qk | δj)]P (qk | δj)
∂P (qk | δj)

∂δtj
= 0 , (30)

for t = 1, 2, . . . , Tj .
The EM algorithm for Bayes modal estimates is the same as the EM algorithm described for maximum

likelihood estimates except that the system of equation solved in part 2 of the M step are given by Equation
30 rather than Equation 20.

Polytomous Items
The EM algorithm described above for dichotomous items can be generalized to polytomous items. If

there are Lj response categories (0, 1, . . . , Lj − 1) for item j then the conditional probability of a response
in category l, l = 0, 1, . . . , Lj − 1, of item j given a latent variable value of qk is the item category response
function Pl(qk | δj). The complete data log-likelihood analogous to Equation 11 in the case of polytomous
items is (Woodruff and Hanson, 1996):

K∑
k=1

J∑
j=1

Lj−1∑
l=0

log[Pl(qk, δj)]r
(s)
jkl +

K∑
k=1

nk log[πk] , (31)

where r
(s)
jkl is the number of examinees who have a latent variable value of qk and respond in category l

of item j. The complete data sufficient statistics that are computed in the E step at iteration s are r
(s)
jkl,

j = 1, 2, . . . , J , k = 1, 2, . . . ,K, l = 1, 2, . . . , Lj . It is shown in Woodruff and Hanson (1996) that

n
(s)
k =

Lj−1∑
l=0

r
(s)
jkl , (32)

for all j.
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The EM algorithm in the case of polytomous items consists of computing r
(s)
jkl in the E step and then find-

ing the parameters that maximize the complete data log-likelihood in Equation 31 subject to the constraint
that

Lj−1∑
l=0

Pl(qk, δj) = 1 , (33)

for J = 1, 2, . . . , J and K = 1, 2, . . . ,K. For more details on using the EM algorithm to compute parameter
estimates for polytomous IRT models see Woodruff and Hanson (1996, 1997).
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