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Let X andY be discrete random variables representing the distribution of scores on two forms
of a test (labeled Form X and Form Y, respectively) in the some population. The possible values
taken on byX aresx(i ), i = 0, . . . , Kx, where there areKx + 1 possible scores for Form X. The
possible values taken on byY aresy( j ), j = 0, . . . , Ky, where there areKy + 1 possible scores
for Form Y. It is assumed thatsx(i )− sx(i − 1) = dx > 0, i = 1, . . . , Kx andsy( j )− sy( j − 1) =
dy > 0, j = 1, . . . , Ky.

The goal of equipercentile equating is to find a functione such thatG[e(x)] = F(x) for all
x andF [e−1(y)] = G(y) for all y, whereF andG are the cumulative distributions forX andY,
respectively. IfX andY were continuous then the equipercentile conversion of scores on Form X to
scores on Form Y would be given bye(x) = G−1F(x) and the equipercentile conversion of scores
on Form Y to Form X would be given bye−1(y) = F−1G(y). SinceX andY are discrete random
variables,F−1 andG−1 are not defined and consequently the equipercentile equating functions are
not defined.

One way to define an equipercentile equating function for discrete test scores is to use contin-
uous approximations ofX andY in place of the discrete distributions. The equipercentile equating
function is defined in terms of the continuous approximations and applied to the discrete test scores.

One possibility for obtaining continuous approximations to the discrete score distributions is to
use kernel estimators (Holland and Thayer, 1989). Kernel estimators are used to provide estimates
of continuous distributions from a sample containing discrete data. Kernel estimators are typically
used in cases where the underlying distribution is known to be continuous and an estimate of the
continuous distribution is desired based on a sample of discrete data values. In this paper the kernel
estimators are used to create an artificial continuization of a distribution which is discrete so that
the inverse of the distribution function is defined.

A kernel continuization of the discrete random variableX is given by
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where f [sx(i )] = Pr[X = sx(i )] (it is assumedf [sx(i )] > 0 for all i ), h is a parameter determining
the degree to which the discrete density is spread out, andκ(x) is a continuous (usually symmetric)
density function on the interval [−a,a]. The kernel continuizationfk[sx(i )] is greater than 0 in the
interval [sx(0) − ah, sx(Kx) + ah] and is equal to 0 outside this interval. The functionfk(x) is a
density function on the interval [sx(0)− ah, sx(K )+ ah] since∫ sx(Kx)+ah
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whereu = [x−sx(i )]/h. For alli , [sx(0)−ah−sx(i )]/h ≤ −a and [sx(K )+ah−sx(i )]/h ≥ a.
Consequently,
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Consider the case whereκ(x) = 1/dx for x in the interval [−.5dx, .5dx] (κ is a uniform
density). In this case the cumulative distribution function of the kernel continuization ofX (Fk(z))
is given by
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whereu = [x − sx(i )]/h and it is assumed thath ≥ 1. The lower limit of the integral in Equation
2 will be less than or equal to−.5dx for all i . Forsx(i ) ≤ z− .5dxh the upper limit of the integral
in Equation 2 is greater than or equal to.5dx. Consequently, forsx(i ) ≤ z− .5dxh the integral in
Equation 2 can be written as ∫ .5dx

−.5dx

1

dx
du= 1 .

Forsx(i ) ≥ z+ .5dxh the upper limit of the integral in Equation 2 is less than or equal to−.5dx so
that the integral in Equation 2 is equal to zero. Forz− .5dxh < sx(i ) < z+ .5dxh the integral in
Equation 2 can be written as∫ [z−sx(i )]/h
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Let i ∗l be the smallest integer such thatsx(i ∗l ) > z− .5dxh and leti ∗u be the largest integer such
thatsx(i ∗u) < z+ .5h. Equation 2 can then be written as
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If h = 1 theni ∗l = i ∗u = i ∗ and Equation 3 can be written as
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Equation 4 multiplied by 100 is the percentile rank function. This function gives percentile
ranks as defined in many elementary statistics and measurement texts (e.g. Blommers and Forsyth,
1977). Consequently, the traditional definition of percentile rank is seen as equivalent to the
percentiles of a continuization of the discrete score distribution using a uniform kernel continuization
with h = 1 (Holland and Thayer, 1989).

The equipercentile equating function for converting scores on Form X to scores on Form Y
using the kernel continuization given in Equation 4 isG−1

k Fk(x), whereGk(y) is the analog of
Equation 4 forY given by
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whereg[sy( j )] = Pr[Y = sy( j )] and j ∗ is the smallest integer such thatsy( j ∗) > z− .5dy.
For a valuep in the interval [0,1] the valuez such thatGk(z) = p is given by
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wherej ∗ is the smallest integer such thatp < G[sy( j ∗)]. Using Equations 4 and 6 the equipercentile
equating function for converting scores on Form X to scores on Form Y is
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where
p∗(i ) = F [sx(i − 1)] + .5 f [sx(i )] ,

and j ∗ is the smallest integer such thatp∗(i ) < G[sy( j ∗)].
In applications the discrete score densityf [sx(i )] is not known (the following discussion of

f [sx(i )] also applies tog[sy( j )]). Instead, an estimate off [sx(i )] would be used. One possibility is
to use the observed score probabilities as estimates off [sx(i )]. A possible problem is that if any of
observed probabilities are zero thenf̂k(x) = 0 for somex in the interval [sx(0)−.5dx, sx(K )+.5dx].
This produces the same problem as the continuization was supposed to solve — the cumulative
distribution function has the same value for multiple values ofx and consequently the inverse of
the cumulative distribution function is undefined.

One possible way to avoid this problem is to use an estimate off [sx(i )] that is greater than zero
for all i , even if there are some scores that are not obtained by any examinee in the sample. Such an
estimate may be obtained by fitting a model to the data, or by mixing the observed distribution with a
uniform distribution, using a large mixing weight for the observed distribution and a corresponding
small mixing weight for the uniform distribution.

Another possibility is to pick one of the possible values for the inverse of the cumulative
distribution function when there are multiple values ofx which produce the same value ofF̂k(x).
For example, if all values in an interval [xl , xu] produce the same value ofF̂k(x) then the midpoint
of the interval (.5xl + .5xu) might be used as the inverse ofF̂k(x) for x in the interval [xl , xu].

The use of a kernel function [κ(x)] that was non-zero on a larger interval than [−.5dx, .5dx]
could also be used to prevent zero values off̂k(x). For example, Holland and Thayer (1989) suggest
using a normal density function forκ(x). This would result inf̂k(x) > 0 for all realx.

A value ofh greater than 1 could be used with the uniform kernel function to eliminate zero
values of f̂k(x). A variable kernel (where there are different values ofh corresponding to each
score) could be used to spread the density more for scores close to scores with zero density.
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